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Abstract. Fourier sensing devices collect data in the frequency domain. For
example, Magnetic Resonance Imaging (MRI) is a Fourier sensing modality

where the user has the freedom to choose which spatial frequencies are sampled.

With Fourier sensing, it is commonly the case that the field-of-view (FOV), the
area of space to be imaged, is known prior to reconstruction. Most commonly,

reconstruction algorithms have focused on FOVs with simple geometries. This

leads to sampling patterns that are more burdensome (with more samples)
than necessary. Due to the reduced area of imaging possible with an arbitrary

(e.g., non-rectangular and non-convex) FOV, the number of samples required

for a high-quality image is reduced. However, when an arbitrary FOV has been
considered, the reconstruction algorithm has been computationally expensive.

In this manuscript, we present a method to reduce the sampling burden for an

arbitrary FOV with an accompanying direct (non-iterative) and computation-
ally efficient reconstruction algorithm. We also present a method to decrease

the computational cost of the iterative POCSENSE algorithm used with a non-
rectangular FOV. We present results using MRI data of an ankle, a pineapple,

and a brain.

1. Introduction. Fourier sensing imaging devices collect data in the frequency
domain; some form of inverse Fourier transform is then required to reconstruct the
image. Examples of Fourier sensing systems include Magnetic Resonance Imaging
(MRI), Computed Tomography, Optical Coherence Tomography, Synthetic Aper-
ture Radar, and Radio Astronomy. For these modalities, it is commonly the case
that the field-of-view (FOV), the area of space to be imaged, is rectangular. As-
suming the sampling pattern is a Cartesian grid, this rectangular FOV dictates the
spacing between samples required to satisfy the Nyquist-Shannon sampling theo-
rem: the spacing between grid points in the frequency domain is the inverse size of
the FOV in the corresponding dimension [33]. This sampling pattern is commonly
referred to as fully-sampled [3, 13, 25, 46].

Past works have attempted to develop reconstruction algorithms that are able
to generate high-quality images from fewer samples with a reduced non-rectangular
FOV [1, 12, 27, 30, 39]. An FOV of this type could better isolate empty space
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from the object to be imaged (Fig. 1). We will separate these methods into two
types: direct methods and iterative methods. For example, in the special case
of a hexagonal FOV, one can sample with a hexagonal sampling pattern and use
the inverse hexagonal Fast Fourier Transform (HexFFT) to reconstruct the im-
age [19, 9]. The HexFFT can be implemented with standard and computationally
efficient FFT implementations [7]. Though useful, the HexFFT is restricted to
hexagonal FOVs. Moreover, the pixels in the image domain are hexagons, which is
non-standard for current displays. Other works have proposed using a circular or
elliptical FOV in combination with an angular sampling pattern (e.g., radial, spiral,
or PROPELLER) [45, 27]. Still other methods do generate a sampling pattern in
accordance with a more general, but still convex, FOV [1, 12, 30]. These methods
use a lattice as the sampling pattern to take advantage of a non-rectangular FOV
[1]. The lattice used is specific to the support of the object imaged (i.e., the region
of the field of view where sample is present). Note that a hexagonal sampling pat-
tern is a special case of a lattice; so these methods can be thought of generalizations
of the hexagonal sampling pattern. With these methods, the lattice sampling pat-
tern in combination with the reconstruction method limits the field of view (FOV)
to convex shapes. In this manuscript, we present a sampling pattern and a direct
reconstruction method that accommodates a non-convex FOV and generates an
image with square pixels.

Several iterative methods exist that accommodate a more general FOV [36, 48,
28, 43, 38, 23]. In [36], Papoulis presents an iterative method based on a known sup-
port. In [48], Wang et al. extend this technique to also estimate the support during
the iterative reconstruction process. In [43], Samsanov et al. describe POCSENSE,
a method for taking advantage of an arbitrary FOV similar to that of [36] for the
parallel MRI setting (where multiple sensing coils simultaneously collect data of
the object) that also accommodates additional constraints. These methods do not
specify a sampling pattern and they reconstruct the entire rectangular FOV with
the assumption that the values of pixels outside the support be 0. Other methods
assume that the support is a subset of the FOV but not known prior to image
reconstruction (e.g., [23]). In this manuscript, we assume that the FOV is known
and that the support is a subset of this FOV.

We present a direct (non-iterative) method for reconstructing an image from a
reduced sampling pattern generated from a non-rectangular FOV1. We show exam-
ples where high-quality images are reconstructed from a reduced sampling pattern
using MRI data of an ankle, a pineapple, and a brain. We extend this technique to
reconstruct high-quality images from parallel MRI data, where multiple coils (i.e.,
antennas) simultaneously image the object. We also present an iterative method
for parallel MRI that accommodates an arbitrary FOV and is more efficient than
POCSENSE. Finally, we present several avenues for future work.

2. Background.For the purposes of discussion, we assume that the non-rectangular
FOV is closed, compact, and that it is known a priori. Furthermore, we assume
that the support of the object to be imaged is a subset of this FOV. With MRI,
the FOV is commonly determined from a localizer, a low-quality image generated
from data collected with a fast scan used for the purposes of identifying the rel-
evant anatomy and selecting the FOV. Currently, the procedure for clinical MRI

1Note that an early version of this work was presented at the 2024 IEEE conference on Com-
putational Imaging and Synthetic Apertures.
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Figure 1. An axial slice of a brain: a) the yellow rectangle
and the cyan contour represent a rectangular and non-rectangular
FOV, respectively, and b) a depiction of the reduced area in the
non-rectangular FOV.

is for the technologist to select a rectangle on the localizer image that is used as
the FOV. Instead, the technologist could draw an arbitrary contour (or a set of
contours, if the object to be imaged is not connected - e.g., two legs) that would be
the non-rectangular FOV. With radio astronomy, it may be known that the object
of interest only encompasses a non-rectangular volume of space from past imaging
[8]. With optical coherence tomography, the FOV is specified by the arc subtended
by the laser beam [49].

The two-dimensional (2D) Fourier transform of a function I : R2 → C is

F{I} (ku, kv) =
∫ ∞

−∞

∫ ∞

−∞
I(u, v)e−i2π(kuu+kvv) du dv. (1)

With Fourier sensing devices, values of F{I} are recorded for a set of individual
spatial frequency coordinates (ku, kv). With MRI, values of F{σI} are measured,
where σ : R2 → C quantifies the sensitivity of the antenna as a function of space.
Parallel MRI simultaneously collects data with multiple antennas.

To satisfy the Nyquist-Shannon sampling theorem with a FOV of dimensions
FOVu × FOVv, the sampling pattern is a Cartesian grid centered on the (0, 0) fre-
quency and the spacing between samples should be less than 1/FOVu and 1/FOVv

in the u and v dimensions, respectively. The resolution of the resulting image is
determined by the number of samples. Such a sampling pattern for the arbitrary
object of Fig. 2a is depicted in Fig. 2b.

The insight that leads to the method of this manuscript is that any non-rectangular
image can be decomposed into the sum of two images with smaller supports. For
example, the object of Fig. 2a can be decomposed as shown in Fig. 3b-c. As long
as we are careful about how we separate the image into its parts, the sampling pat-
tern required to satisfy the Nyquist theorem for the image’s components has fewer
samples than the fully-sampled pattern represented in Fig. 2b.

3. Methods. In this section, we will first discuss how the reduced sampling pattern
is generated. We will then present a method for reconstructing the image from the
reduced sampling pattern.
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Figure 2. A depiction of a non-rectangular FOV and its sam-
pling pattern. The dark blue contour in (a) shows the boundary of
the non-rectangular FOV, and (b) shows the full sampling pattern
associated with a rectangular FOV.

Figure 3. A depiction of how a non-rectangular FOV is separated
into components: a) shows an aliased version non-rectangular FOV
of Fig. 2a where the dashed lines separate the outer region of (b)
and the inner region of (c).

3.1. Generating the sampling pattern. Consider the reconstruction created by
applying the inverse Discrete Fourier Transform (DFT) to a sampling pattern that
consists only the even columns of the full sampling pattern (where the odd columns
are filled with 0 values). The reconstructed image includes significant aliasing; it is
the sum of the image with itself circularly shifted by half the rectangular FOV, as
shown in Fig. 3a. For the example depicted, the boundary of the original object
intersects that of its aliased copy in four places. The dashed horizontal lines cross
these intersection points. Let us denote the region consisting of that above the top
dashed line as well as that below the bottom dashed line – as the outer region (Fig.
3b), and the remaining areas – the region within the two dashed lines – as the inner
region (Fig. 3c). The sampling pattern for the non-rectangular FOV was created by
combining even columns for a fully-sampled pattern (Fig. 4a) with the odd columns
for a sampling pattern for an FOV with a reduced vertical extent (Fig. 4b).

The inner and outer regions can be identified as follows. Let S be a 2D array, the
size of the desired image, that indicates the support based on the non-rectangular
FOV. That is, those elements of S that correspond to pixels within the FOV have
values of 1, and all other elements have values of 0. The rows of S in the inner
region are identified by identifying those rows of S+ τu(FOVu/2) with any element
equal to 2; here, τu(·) represents a circular shift in the horizontal (or u) dimension.
The rows of S in the outer region are the complement set of those in the inner
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Figure 4. Sampling patterns related to the FOV: a) the full sam-
pling pattern based on the rectangular FOV, b) the full sampling
pattern for the inner region, and c) the proposed sampling pattern
for the non-rectangular FOV.

region. After the rows of the inner region are identified, the support of the inner
region Sinner is found by intersecting the inner region with the non-rectangular FOV
and its interior. Performing the same procedure with the rows of the outer region
yields the support of that region Souter.

The aliased image of Fig. 3a can be reconstructed by performing an inverse
DFT on the even columns of the full sampling pattern with those values of the odd
columns set to 0 (Fig. 2b). Note that, in the aliased image (Fig. 3a), the outer
region does not overlap itself. Performing a Hadarmard product (i.e., a point-wise
product, denoted by ⊙) between the aliased image and Souter (Fig. 3a) yields an
uncorrupted image of the outer region (Fig. 3b). This shows that we can accurately
reconstruct the outer region using every other column of the full sampling pattern.

Thus far, our sampling pattern consists of samples only from the even columns
of the full sampling pattern. We will now add additional samples into the sampling
pattern to reconstruct the inner image depicted in Fig. 3c.

If we were going to create a full sampling pattern for the inner region, we would
create a Cartesian grid with a horizontal spacing equal to that depicted in Fig.
2b, since the horizontal extent of the inner region is the same as that of the full
non-rectangular FOV. However, the vertical extent of the inner region is smaller
than that of the non-rectangular FOV; thus, its samples could be separated further
apart vertically. The full sampling pattern would be a Cartesian grid with points
separated horizontally by an amount less than 1/FOVu but with points separated
vertically by an amount less than 1/FOVv,inner; this is depicted in Fig. 4b. This
Cartesian grid satisfies the Nyquist-Shannon sampling theorem. Therefore, any
pattern with a density of samples higher than that of this grid also satisfies the
Nyquist-Shannon sampling theorem. We replace all the odd columns of the full
sampling pattern with the corresponding columns of the full sampling pattern for the
inner region (Fig. 4c); this still satisfies the requirements of the Nyquist-Shannon
sampling theorem for the inner region.

Figure 4c shows the proposed sampling pattern for the non-rectangular FOV;
the gray dots are those that were used to reconstruct the outer image; the blue
dots are the sample locations that will be added for the inner image. The samples
added into the pattern to reconstruct the inner image are positioned horizontally
at the odd columns of the original fully-sampled pattern, but are separated by the
inverse of the vertical extent of the inner region. The increased vertical separation
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between samples is the reason why the new sampling pattern has a reduced number
of samples when compared to the original full sampling pattern. Note that this
sampling pattern is not generally a lattice; it is not simply a replication of a basic
pattern. Instead, it is the union of two Cartesian sampling patterns.

3.2. Image reconstruction. In this subsection, we will first describe the direct
(non-iterative) approach. We will then discuss an iterative model-based approach
where the reconstructed image is the solution of an optimization problem [21].

3.2.1. Direct reconstruction. Let I, Iouter, and Iinner denote the image, the outer
region, and the inner region, respectively. Let F denote the DFT, let F denote the

continuous Fourier transform, and let F
(k)
nu denote the non-uniform DFT to the set

of frequencies contained in the set k. The Iouter image is reconstructed from the
even columns of the sampling pattern. Then

F(I) = F (Iouter) + F (Iinner)

⇒ Iinner = F−1 {F(I)−F (Iouter)} . (2)

Equation (2) amounts to the reconstruction algorithm for Iinner, where the contin-
uous Fourier transforms are replaced by the appropriate DFT [22] (either gridding

[24, 5, 18] or inverse gridding [37, 41]) . Let F
(k)
nu and F

inv,(k)
nu denote gridding and

inverse gridding, respectively2.
Let keven and kodd denote the set of frequencies collected from the even and odd

columns of the sampling pattern, respectively. Let kall = kodd ∪ keven. Let kinner
denote the set of frequencies that would be required for a fully-sampled pattern of
the inner region (Fig. 4b). Let F{I}even, F{I}odd, and F{I}all denote F{I}(keven),
F{I}(kodd), and F{I}(kall), respectively. Let S denote a 2D array of the size of
the image with values of 1 for those pixels within the non-rectangular FOV, and 0
otherwise. Let Souter and Sinner denote 2D arrays that indicate the outer and inner
images, respectively. The direct (non-iterative) algorithm for reconstruction of an
image with a non-rectangular FOV is presented in Alg. 1. This algorithm does the
following: 1) reconstructs the outer region from the even columns, 2) interpolates
all data onto the fully-sampled pattern for the inner region, 3) subtracts the Fourier
values of the outer region from the samples of the inner grid, 4) reconstructs the
inner region, and 5) sums the outer and inner regions together to create the final
image.

Algorithm 1: Direct reconstruction with a non-rectangular FOV

Inputs: S, keven, kodd, F{I}even, and F{I}odd
Ieven = F−1 (F{I}even)
Iouter = Souter ⊙ Ieven
Finner,even = F

inv,(kinner)
nu (Ieven)

Finner = F{I}odd ∪ Finner,even

Iinner = F
(kinner)
nu

[
Finner − F

inv,(kinner)
nu (Iouter)

]
I = S ⊙ (Iinner + Iouter)
Output: I

2Note that, in general, Fnu is not invertible and F inv
nu is an approximation to its inverse.
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Figure 5. The shape of the largest connected object that can be
reconstructed accurately with the method described. Note that the
two lengths labeled w must be equal; however, the lengths labeled
h1 and h2 need not be.

With parallel MRI, where multiple coils simultaneously collect data at the same
spatial frequencies, we can also use the direct algorithm. To do so, we will determine
the non-rectangular FOV for each sensitized image σ(j) I; here, σ(j) denotes the
sensitivity of the jth coil. A simple approach would be to compute the union of
these non-rectangular FOVs, and proceed to reconstruct each coil’s image using Alg.
1. Alternatively, one could use the PISCO algorithm to automatically determine
a non-rectangular FOV [29]. However, this would yield a sampling pattern that
is likely to be more burdensome than is necessary. Instead, we will individually
identify each coil’s non-rectangular FOV, determine the resulting sampling pattern
for each individual non-rectangular FOV, and use the resulting sampling pattern
with the most number of samples. The image for each coil I(j) is reconstructed
using Alg. 1. Then, each coil’s image is multiplied by the support for that coil:
I(j) := S(j) ⊙ I(j). The images from all coils can then be combined into a single
image using the method of Roemer et al. [42].

For the sampling pattern described with the direct reconstruction method pre-
sented, the non-rectangular FOV is not generally a convex set. The shape and
maximum size that the object could be is indicated in Fig. 5.

3.2.2. Model-based reconstruction. With Fourier sensing, one can reconstruct the
image by solving the following optimization problem: minimize ∥Fnu I − b∥, where
∥ · ∥ represents a norm, b represents the data collected, and I is the optimization
variable. When Gaussian noise is present, which is what we will assume for the
remainder of this manuscript, the solution that minimizes the ℓ2 norm is the max-
imum likelihood estimate (MLE). For the special case where the data collected is
on a Cartesian grid centered on the 0 frequency and satisfies the Nyquist-Shannon
sampling theorem, Fnu = F and the MLE reconstruction is I⋆ = F−1b.

When a non-rectangular FOV is provided with a corresponding support S, one
can find the MLE by solving

minimize ∥Fnu I − b∥2 subject to SC ⊙ I = 0.

Here, SC = 1 − S indicates pixels that lie outside the non-rectangular FOV. For
the case where the data is collected on a Cartesian grid, this problem becomes

minimize ∥Mb F I − b∥2 subject to SC ⊙ I = 0,
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where Mb is a mask that indicates which data values of the Cartesian grid were
collected.

In [43], Samsonov et al. suggest using the Projection Onto Convex Sets (POCS)
algorithm to solve this problem. This approach iterates over the following two
steps: 1) project onto the set of images that are consistent with the data collected,
and 2) project onto the set of images where pixels outside of the FOV all have
values equal to 0. While effective, this algorithm is slow to converge. It is also
intuitively inefficient: we should not need to include pixels outside of the FOV in
the optimization variable if we know their values are all 0. Instead, we propose
solving the following optimization problem:

minimize ∥Fnu M
T
S Ĩ − b∥2. (3)

Here, Ĩ is a vector of those pixels within the FOV and MS is the linear transforma-
tion such that MSI is a vector of only those elements of I that are within the FOV.
If the data lies on a Cartesian grid, Fnu can be replaced with Mb F . Note that this
is a special case of the problem formulation presented in [38].

Problem (3) is a least-squares problem; it can either be solved analytically using
the pseudo-inverse [47], or it can be solved numerically with LSQR [35], which
converges to a solution much faster than POCS.

We extend the formulation of (3) to the case of parallel MRI as follows:

minimize ∥Fnu σMT
S Ĩ − b∥2, (4)

where σ =
[
σ(1), σ(2), . . . , σ(C)

]T
, σ(j) is a diagonal matrix for the jth coil with

diagonal elements equal to its sensitivity values, C is the number of coils used
for data collection, Fnu is a block-diagonal matrix where each block is Fnu, b =
[b(1), b(2), . . . , b(C)]T , and b(j) is a vector of data collected by the jth coil. Problem (4)
can also be solved with LSQR [35]. Note that the additional information provided
by the multiple coils can reduce the number of samples required for a high-quality
image [14].

Problems (3) and (4) need not use the sampling pattern described in this man-
uscript. These problems can be solved for any sampling pattern (e.g., spiral [2, 32]
or rosette [34, 10]).

4. Experiments. Section 5 will present results of experiments involving MRI data
of a sagittal slice of an ankle, an axial slice of a pineapple, and axial slices of a
brain. For all of the data presented, the data was collected with two dimensions
of phase-encodes and one dimension of readout. The data was then inverse Fourier
transformed along the readout direction to place the data into the (kx, ky, z) hybrid
domain [4] (where x, y, z are the spatial coordinates and kx, ky, kz are the frequency
coordinates). Once in the hybrid domain, the slice of each z location is reconstructed
independently. Each dataset was normalized so that the maximum Fourier value
had a magnitude of 1.

MRI Data of the pineapple and brain were collected with a 3 Tesla clinical MRI
machine for the purposes of the research presented in this manuscript. These data
were collected with currently available clinical scanning protocols by combining al-
ternating columns from two separate acquisitions with different FOVs. Any subject
motion that occurs in between data collections leads to errors in the reconstruc-
tion. All procedures performed in studies involving human participants were in
accordance with the ethical standards of the institutional and/or national research
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Figure 6. Subfigure (a) shows a sagittal slice of an ankle and
foot; (b) shows a corresponding non-rectangular FOV that does not
include the upper-right quadrant, and (c) shows the corresponding
sampling pattern for the non-rectangular FOV of (b). The sam-
pling burden of the reduced sampling pattern is 75%.

committee and with the 1964 Helsinki declaration and its later amendments or com-
parable ethical standards. Data were collected with health insurance portability
and accountability act (HIPPA) compliance and we obtained prospective informed
consent from the volunteer under COMIRB #19-0158.

The data of the ankle was collected with a 3D Cartesian full sampling pattern
with two dimensions of phase-encodes and one dimension of readout (Fig. 6). The
data was collected using a 3 Tesla clinical MRI machine with a dedicated ankle coil
array and was shared publicly as part of [15]. For the ankle, we will first simulate
a single-coil acquisition: we will reconstruct the image from the fully-sampled data
for all coils and we will combine those images using the method of [42]. This will
be considered the true image. We will Fourier transform this image to generate the
data of the full sampling pattern, and we will eliminate 25% of the data according
to the sampling pattern of Fig. 6c for reconstruction with the non-rectangular FOV
of Fig. 6b. Separately, we will perform a parallel MRI reconstruction where we
will simulate the data that would have been acquired with the reduced sampling
pattern. To do so, we will first reconstruct the image of each coil from the fully-
sampled data; we will then use inverse gridding to estimate the Fourier values for
the spatial frequencies of the reduced sampling pattern.

The data of the pineapple and the brain were collected using a 3 Tesla clinical
MRI machine with a birdcage coil array. For these datasets, both a fully-sampled
3D Cartesian dataset and a prospectively undersampled dataset with the sampling
pattern described for a non-rectangular FOV were collected.

Initially, for the ankle, we will use a non-rectangular FOV that consists of the
2nd, 3rd, and 4th quadrants. That is, the FOV will not include the 1st quadrant, as
depicted in Fig. 6b. For this FOV, the sampling pattern consists of every other row
and every other column of the fully-sampled pattern; that is, in every 2 × 2 block
of samples three samples are included in the sampling pattern, as shown in Fig. 6c.
This will allow us to compare the results with retrospective downsampling. That is,
we will reconstruct the image from the fully-sampled pattern and then reconstruct
the image using only the samples from the sampling pattern of Fig. 6c. Though
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Figure 7. Magnitude image reconstructions of a sagittal slice
of an ankle and foot: a) shows the fully-sampled reconstruction,
b) shows the zero-filled reconstruction with the non-rectangular
FOV sampling pattern of Fig. 6b with a sampling burden of 75%,
c) shows the reconstruction using Alg. 1, c) the reconstruction
using only the even columns of data, d) the reconstruction after
subtracting away the Fourier values of the inner region, and e) the
difference between (a) and (c).

Figure 8. Image reconstructions for six coils of a dedicated an-
kle array - a) Magnitude images for each coil, and b) the non-
rectangular FOV determined using the intensity images of (a).

the sampling pattern presented in this manuscript is not generally a lattice, for this
case, the sampling pattern is a lattice (as shown in Fig. 6c).

5. Results. For the following results, let the sampling burden be the ratio of the
number of samples of the given pattern to the number of samples of the full sam-
pling pattern. When coil sensitivities were required, they were estimated with
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Figure 9. Magnitude image reconstruction of the ankle using
the direct reconstruction methods and the sampling pattern deter-
mined according to the individual coil FOVs shown in Fig. 8b with
a sampling burden of 63%. The difference image shows the type of
the errors that arise from this method; these errors are due to the
fact that individual coils sense the whole subject imaged.

Figure 10. Magnitude image reconstructions of an axial slice of
a pineapple from data collected with a single coil: left) the fully
sampled reconstruction, center) the direct reconstruction from the
undersampled pattern with a burden of 87.5%, and right) the scaled
magnitude of the difference.

fully-sampled data using the method of Pruessman et al. [40].

Figure 7 shows the direct reconstruction for the ankle from the simulated single-
coil acquisition. The magnitude of the difference ranges up to 10−5. The sampling
pattern for the non-rectangular FOV has a burden of 75%.

Figure 8 shows the individual coil images from six coils of the ankle array and
the corresponding supports of each image determined by their signal intensity. The
sampling pattern determined using these supports, as described in Sec. 3, has a
sampling burden of 63%.

Figure 9 shows the reconstruction along with its difference from the fully-sampled
reconstruction. This reconstruction was accomplished with a sampling burden of
53%. The difference with the fully-sampled reconstruction ranges up to 10−4. The
larger errors are due to the assumption of the smaller supports. In truth, each coil
senses the entire ankle, which leads to the errors in the results.
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Figure 11. Model-based magnitude image reconstructions of an
axial slice of a pineapple with sampling burdens of (from left to
right) 100%, 87.5%, 68.8%, and 43.8%.

Figure 12. Magnitude image reconstructions using the direct
method for four axial slices of a brain using data collected with an
8 coil array. The sampling pattern of the non-rectangular FOV had
a burden of 95%.

Figure 10 shows the direct reconstruction with a single coil for an axial slice of
a pineapple. The non-rectangular FOV was accomplished with an 87.5% sampling
burden.

Figure 11 shows the model-based reconstruction of the axial slice of a pineap-
ple with data collected from a 14 coil array. Results are presented with sampling
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burdens of 87.5%, 68.8%, and 43.8%. The sampling pattern was reduced by elimi-
nating alternating samples from the even columns, and then eliminating alternating
samples from the odd columns. The mean squared error of the undersampled re-
constructions are 1.6× 10−9, 3.0× 10−9, and 7.1× 10−9, respectively.

Figure 12 shows reconstructions using the non-rectangular FOV and compares
them to the fully-sampled reconstructions for several slices of a human brain. The
sampling pattern of the non-rectangular FOV had a 95% sampling burden. The
differences for all slices range from 0 to 10−4. As in all other examples, taking
advantage of the non-rectangular FOV reconstructs a high-quality image with a
reduced sampling burden. The significant errors in the reconstruction are due to
subject motion in between the full sampling pattern and the reduced sampling
pattern; this would largely be eliminated if data were collected during a single
scanning protocol.

6. Conclusion. The method presented in this manuscript takes advantage of a
non-rectangular FOV with Fourier sensing to reconstruct a high-quality image with
fewer samples. This FOV need not be convex nor connected. We presented both a
direct method of reconstruction as well as an iterative method for reconstruction.
Note that Gridding and inverse Gridding both take advantage of the Fast Fourier
transform and are O(n log n) algorithms (where n is the number of elements of the
input). Since the direct reconstruction algorithm takes advantage of Gridding and
Inverse Gridding, it too has a computational complexity of O(n log n). Note that
the signal-to-noise (SNR) ratio may be dependent on the amount of data collected;
therefore, reducing the amount of data collected may have an adverse affect on
image quality. For example, the SNR of MRI depends on the length of time spent
collecting data [33]. Therefore, taking advantage of the reduced sampling burden
would reduce the SNR correspondingly, which may reduce overall image quality.
This would be especially relevant for low-field MRI, for example, where the SNR is
a limiting factor in image quality [44, 26].

The presented method reconstructs the image accurately as long as the non-
rectangular FOV is a superset of the object’s support. Pixels within the FOV may
be absent of any object. However, to avoid errors, all pixels exterior to the FOV
must be absent of any object.

In this manuscript, we also presented an iterative method of reconstructing an
image with a non-rectangular FOV. By incorporating this FOV into the objective
function, we were able to eliminate the need for a projection operator and use a
more efficient numerical solver than previous methods. We further showed that we
could reconstruct a high-quality image with even fewer samples in the parallel MRI
setting.

Regularization terms can be added into the objective functions of (3) and (4),
which could allow for high-quality reconstructions with even fewer samples. Thus,
one could incorporate compressed sensing [11, 31], perhaps with structured sparsity
[17, 16], into the reconstruction. E.g., the sampling pattern could be a variable
density subset of that proposed in this manuscript, and the image could be recon-
structed by solving the following optimization problem:

minimize ∥Fnu σMT
S Ĩ − b∥2 + λ∥Ψ Ĩ∥1, (5)

where Ψ is a sparsifying transformation, and the ℓ1 norm ∥ · ∥1 encourages sparsity.
Incorporating the additional knowledge of the known support into a compressed
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sensing reconstruction should yield a higher-quality reconstruction for the same
number of samples. We will pursue this approach in future work.

Alternatively, problem (5) assumes that the values for those pixels outside of
the support are exactly equal to 0. Due to noise (largely due to thermal Brownian
motion in MRI [20]), the values of those pixels outside of the support will be small
but non-zero. In future work, we will alter the optimization problem as follows:

minimize ∥Fnu σ I − b∥2 + λ∥Ψ Ĩ∥1 subject to ∥MS̄I∥2 ≤ ϵ,

where MS̄ is a matrix that isolates those pixels outside of the support into a vector
(the ·̄ indicates the complement set), and ϵ is a noise bound (which can be identified
from an MRI scan without any excitation). An equivalent form of this problem can
be solved with the Fast Iterative Shrinkage Threshold Algorithm [6].

Note that once the Fourier values of the inner region are estimated at the spatial
frequencies in kinner, the data lies on a Cartesian grid. This indicates that, rather
than using gridding to reconstruct Iinner, one could instead use the inverse DFT,
which would be more efficient.

In this work, we assumed that the even columns would be the alternating columns
of a full sampling pattern. This led to aliasing by half the FOV as depicted in Fig.
3a. Alternatively, one could permit an arbitrary amount of aliasing, which would
correspond to different separations between the even columns. By searching over
the amount of aliasing, it is likely that one would find a sampling pattern with fewer
samples than that presented in this manuscript. In the same vein, one could try to
identify a rotation of the sampling pattern that leads to a reduced sampling burden.
Referring to Fig. 5, if the object had substance in the corners but was vacant near
the edges but away from the corners, then a rotation of the FOV would lead to a
reduced sampling pattern. We leave this pursuit as future work.

MATLAB code for reconstructing images in accordance to the methods of this
manuscript will be made available at https://github.com/ndwork/nonRectSupport

and at www.nicholasdwork.com. The pineapple and brain data collected for this
manuscript will also be made publicly available at www.nicholasdwork.com.
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