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Does the trajectory stay close, or can it move far away?
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Theorem: the trajectory always stays within a bounded distance
of Hk .
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Proof (by induction):

Base step: since m = k, z'*) € S;.. Therefore the theorem is
true by the previous theorem.
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Inductive step:
Case 1: zF) € S,
Since a < ( Fz®) — f*) /G2
207D — 2|y = allg™ s < aG < 2(£(a®) - £7) /G
By the triangle inequality,
dist (x<m+1>,X *) < dist (x<m+1>,x<m>) + dist (az<m>,X*)
<2 (f(a:(k)) _ f*) /G + Hy

Case 2: =8 ¢ S,
Then we move closer to the optimal set (as before).
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Two possibilities
1) We’re converging to a solution

2) We’re bouncing around the solution
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Small step size:

Can we detect when the trajectory is bouncing around the optimal
set?

If so, can we make use of this knowledge?
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We know that if the step size is small enough, then the next
trajectory point is closer to the solution than the current point.

We know that the trajectory will bounce around the solution if
the step size is too large.

We know that we can detect when the trajectory is bouncing
around the solution.
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If the bouncing metric is below a threshold

Reduce the stepsize: Ok = T Ok—1 (< r <1

Perform a subgradient descent update
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Minimize the maximum of a set of affine functions (larger problem)
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Lasso Problem
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Lasso Problem
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Neural Network

RESNET on CIFAR-10 dataset with L1 norm regularization
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RESNET on CIFAR-10 dataset with L1 norm regularization
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Conclusion

We have developed an apaptive method for determining the step
size with subgradient descent.

This increases the rate of convergence of the subgradient
optimization algorithm.
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Value vs Iteration
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