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Dependence of parallel imaging with linear
predictability on the undersampling direction
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ABSTRACT. Parallel imaging with linear predictability takes advantage of information present
in multiple receive coils to accurately reconstruct the image with fewer samples.
Commonly used algorithms based on linear predictability include GRAPPA and
SPIRiT. We present a sufficient condition for an accurate reconstruction based on
the direction of undersampling and the arrangement of the sensing coils. We show,
with examples, that the quality of the reconstruction can be high or low for the
same data based on whether this condition is met or not met, respectively. We
also propose a metric—the acceleration direction metric (ADM)—that uses a fully
sampled region centered on the 0 frequency to identify which direction(s) of under-
sampling would allow for a good-quality image reconstruction prior to full data
collection.
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1 Introduction
A highly effective and ubiquitously used method for accelerating magnetic resonance imaging
(MRI) is parallel imaging,1 where multiple coils simultaneously image the subject from disparate
vantage points; the unique information collected with each coil permits an accurate interpolation
of missing data in the frequency domain. There are two common approaches to parallel imaging:
model-based reconstruction (MBR),2,3 where the MRI system is simulated for reconstruction,
and linear predictability,4 where it is assumed that each Fourier value is a linear combination
of nearby Fourier values. MBR assumes knowledge of the coils’ sensitivities and generates a
single underlying image by solving an optimization problem; algorithms in this vein include
SENSE,5 ESPIRiT,6 PISCO,7 and NLINV.8 Parallel imaging with linear predictability (PILP)
can accelerate MRI without knowledge of the sensitivity maps; instead, PILP uses a single set
of coefficients such that missing data can be estimated with a linear combination of nearby
known sample values. Examples of PILP algorithms include SMASH,9 AUTO-SMASH,10

P-LORAKS,11 GRAPPA,12 and SPIRiT.13

Although PILP can be extremely effective, it may also fail to yield a high-quality image.
Without a method for assuring success, clinicians are left to try the scan and see if the result is of
diagnostic quality or not. When the image is poor quality, the clinician must re-scan the patient,
which reduces the overall utilization of the MRI machine and may increase the time that a patient
is anesthetized (if anesthesia was required for the scanning session). This leaves the clinician
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weary of its usage. If PILP could be made robust to these errors, clinicians could use this form of
accelerated MRI with confidence.

A common method for quantitatively evaluating and optimizing acceleration techniques is
the geometry factor (g-factor).14 In Ref. 15, the sampling pattern for an MBR reconstruction is
altered to optimize a function of the geometry factor (g-factor) and image acceleration. G-factor
analysis, though, is a retrospective analysis. That is, one can use the g-factor to identify which
portions of the image have a high signal-to-noise ratio (SNR) and which portions do not, but only
after the data have been acquired. Thus, it cannot be used to ensure success with PILP.
Furthermore, g-factor analysis confounds errors in the reconstruction from the sensing array with
the signal received from the object to be imaged. Therefore, it does not provide an understanding
of what acceleration is appropriate for a given sensing array.

PILP has two sets of parameters: (1) the amount of and direction(s) of undersampling and (2)
the size of the interpolation kernel. In Ref. 4, Haldar et al. showed that a sufficient condition for
accurate PILP is that the support of the imaged object (the subset of the domain where the image
without noise is non-zero) is a strict subset of the field-of-view of the image. That is, if there are
regions of the field-of-view that do not image the subject and just image air, then there exists a set
of linear coefficients that can accurately interpolate missing data. However, this condition is only
sufficient when the size of the interpolation kernel is unlimited. If the support is a large percent-
age of the field of view, then the kernel must be very large for this condition to be met. The
common success of PILP suggests the existence of a less restrictive, sufficient condition. We
will show cases where much of the image is air, and yet, the quality of the PILP reconstruction
with a reasonably sized kernel is extremely poor.

It has been suggested that PILP yields accurate values for arbitrary displacements in the
Fourier domain,1 permitting an arbitrary acceleration. Presumably, any degradation would be
due completely to the reduction in SNR that accompanies a reduced acquisition time.16 In this
study, we will show that this is not the case. We will provide examples where PILP succeeds with
one accelerated sampling pattern but fails when the sampling pattern is simply rotated. We will
also show examples where the quality is impervious to the direction of undersampling and
explain why this is the case. We will provide a novel sufficient condition for when PILP can
achieve a high-quality reconstruction, and we will provide examples that show the reconstruction
becomes low quality when this condition is not met. Finally, we will present a new method that
automatically identifies the directions of undersampling that can be accelerated while maintain-
ing a high-quality image.

2 Background
In this section, we review AUTO-SMASH10 and show that the generalization of its theoretical
basis justifies GRAPPA,12 SPIRiT,13 and general PILP. (A complete review of the theory of
AUTO-SMASH using the notation of this paper can be found in Appendix A.) Unless other-
wise specified, for the purposes of this discussion, we will assume that processing is performed
in two dimensions. These sampling patterns may be generated with a three-dimensional spin-
warp trajectory with two dimensions of phase encodes and one dimension of readout; after
inverse Fourier transforming along the readout direction, the data are placed in a hybrid
ðkx; ky; zÞ space and the reconstruction of each slice may be performed independently of every
other slice.17

2.1 MRI Signal Equation
The MRI signal with spin density ρ∶R2 → ½0;∞Þ for coil j is16

EQ-TARGET;temp:intralink-;e001;114;156

Sjðkx; kyÞ ¼
ZZ

dx dy Cjðx; yÞρðx; yÞe−i ðkx xþ ky yÞ

¼ FfCjρgðkx; kyÞ; (1)

where Cj is the sensitivity function for the j’th coil, kx ¼ ðγ∕2πÞ∫ tx
0 GxðτÞdτ, ky ¼

ðγ∕2πÞ∫ ty
0 GyðτÞdτ, γ is the gyromagnetic ratio, Gx and Gy are the x and y gradient waveforms,
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tx and ty are the lengths of time that the respective gradient fields are turned on, and
FfCjρgðkx; kyÞ denotes the Fourier transform of Cjρ evaluated at ðkx; kyÞ. For simplicity,
we are ignoring the effects of relaxation and recovery.

The MRI machine samples the Fourier domain at a set of finite points according to a
sampling pattern that is achieved through control of the gradient waveforms. An example sam-
pling pattern for PILP is depicted in Fig. 1. In the example of this figure, the data are under-
sampled by a factor of 2 in both the horizontal and vertical directions (for a total undersampling
factor of 4). Note that with J coils, each sampled point consists of J complex values, one for
each coil.

The user supplies a metric and (at least one) threshold, perhaps one per direction. Points that
were not collected are synthesized as linear combinations of those values that lie within the
threshold. For any uncollected Fourier location, linear coefficients are found to interpolate from
all collected points that lie within a threshold’s distance. In the example of Fig. 1, the user has
specified the k · k∞ as the metric and a threshold of 1.

2.2 AUTO-SMASH
AUTO-SMASH is a seminal work of PILP; the algorithm uses a two-dimensional spin-warp
trajectory18 (e.g., phase encode and readout in ky and kx dimensions, respectively), whereas the
Nyquist sampling theorem would dictate that the phase encoding lines be separated by Δky,
AUTO-SMASH separates lines by MΔky for some integer M > 1. Consider the case where
there are J coils, each with sensitivity map Cj. AUTO-SMASH defines a composite sensitivity
map, Ccomp

0 , created by a linear combination of the individual coil sensitivity maps with linear

coefficients nð0Þ ∈ CJ. That is, Ccomp
0 ¼ P

jn
ð0Þ
j Cj. AUTO-SMASH further assumes that for

each m ¼ 1; : : : ;M − 1; there exist unknown linear coefficients nðmÞ ∈ CJ such thatP
jn

ðmÞ
j Cj ≈ Ccomp

0 expði mΔky yÞ. Then, by the Fourier shift theorem (as detailed in

Appendix A),
P

jn
ðmÞ
j Sjðkx; kyÞ ¼ FfCcomp

0 ρgðkx; ky −mΔkyÞ.
This illustrates that the linear coefficients nðmÞ accurately interpolate unknown values from

collected data locatedmΔky distance away in the ky direction. With the approximation specified,
these same coefficients are valid across the entire Fourier domain. With SMASH9 and AUTO-
SMASH,10 the coils were designed so that Ccomp

0 ≈ κ, for some constant κ, across the field-of-
view of the image. AUTO-SMASH automatically determines the linear coefficients nðmÞ from a
set of lines centered on the 0 frequency [called the fully-sampled region (FSR)] by solving the
linear system S nðmÞ ¼ sfsr, where sfsr is comprised of the values of the FSR.

Fig. 1 In this depiction of parallel imaging with linear prediction, a portion of a sampling pattern is
shown: filled-in circles represent a k− space location that was collected and unfilled circles re-
present a location that was not. A distance threshold of 1 and a metric of k · k∞ are depicted with
blue contours. The undersampling rate in each direction leads to different patterns of collected and
uncollected points. The arrows represent displacements between collected data that lie within the
threshold distance and an uncollected point that must be estimated.
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3 Methods
We will now show how a generalization of the AUTO-SMASH theoretical basis justifies the
more general PILP.

3.1 GRAPPA
GRAPPA, developed heuristically, eliminates the assumption of known nð0Þ and the existence
of an approximately constant composite sensitivity map. Moreover, instead of searching for
coefficients that correspond to a single predetermined displacement, GRAPPA attempts to find
linear coefficients for multiple displacements. The combination of distance threshold and
undersampling rate gives rise to different patterns of collected and uncollected points used for
interpolation, as depicted in Fig. 1. Each unique pattern of collected points surrounding an uncol-
lected point is called a kernel. The blue contours in Fig. 1 show two different kernels.

For a given kernel, as with AUTO-SMASH, the linear interpolation coefficients can be deter-
mined by solving a linear system. The following is a least-squares problem that simultaneously
identifies the interpolation coefficients for all coils

EQ-TARGET;temp:intralink-;e002;114;550minimize
N

kSN − sfsrk22; (2)

where S is comprised of the appropriate values from the FSR, N is the matrix of weights, and sfsr
is a matrix of Fourier values from the FSR, which has a rectangular size nx × ny. For a specific
uncollected Fourier location k, letDk be the number of nonzero points of the relevant kernel. The
matrix S will be of size ½ηxηy × JDk�, N is a matrix of size ½JDk × J�, sfsr is a matrix of size
½ηxηy × J�, and ηx and ηy are the number of times that the kernel fits inside the auto-calibration
region in the kx and ky directions, respectively.

We will now present a novel explicit relationship between Eq. (2) and an assumption similar
to that of AUTO-SMASH. An equivalent form of Eq. (2) is

EQ-TARGET;temp:intralink-;e003;114;422minimize
N

X
k

jSðkÞN − sðkÞfsr j2; (3)

where k ∈ k is an individual location inside the auto-calibration region, SðkÞ is the row of S that

corresponds to location k, and sðkÞfsr is the k
0th row of sfsr. We recognize further that we can write

SðkÞ N as

EQ-TARGET;temp:intralink-;e004;114;345SðkÞN ¼
X
d∈Kk

X
j

Sjðkþ dÞndj (4)

where Sjðkþ dÞ is the signal collected at point kþ d from coil j, nðdÞj is the appropriate weight,
the inner sum is over the coils, and the outer sum is over the collected sample points that lie
within the kernel Kk.

For a given displacement ðdx; dyÞ, we assume

EQ-TARGET;temp:intralink-;e005;114;255

X
j

nðdÞj Cjðx; yÞ ≈ eiðdx xþ dyyÞClðx; yÞ: (5)

That is, we assume that there exists a linear combination of sensitivity maps such that the
result is a specific sensitivity map multiplied by a complex exponential with frequency that cor-
responds to the displacement d. Then, Eq. (4) becomes
EQ-TARGET;temp:intralink-;e006;114;181

SðkÞN ¼
X
d∈Kk

ZZ
dx dy Clðx; yÞρðx; yÞe−iððkx−dxÞxþðky−dyÞyÞ

¼ FfClρgðkx þ dx; ky þ dyÞ: (6)

This reformulation shows that, with the assumption of Eq. (5), for a given displacement,
GRAPPA seeks a set of linear coefficients nðdÞ ∈ CJ such that the coil sensitivity maps approxi-
mate a complex exponential to best take advantage of the Fourier shift theorem. The notable
difference is that the linear combination yields a complex exponential weighted by an individual
coil’s sensitivity rather than a composite sensitivity. Using analogous mathematics as presented
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in Appendix A, performing a linear combination of the collected points from all coils linearly
interpolates missing values of a specific coil’s data. After all missing data are interpolated, the
images from multiple coils can be combined into a single image.19

We can now present a novel sufficient condition for estimation without error when Eq. (5) is
perfectly satisfied and without any noise. For a given location k and kernel, if at least one dis-
placement vector to a collected point within the kernel satisfies Eq. (5), then the interpolation will
be accurate. If more than one displacement vector satisfies Eq. (5), then GRAPPA finds the set of
linear coefficients that interpolate from multiple points in a least-squares optimal sense.

3.2 SPIRiT
SPIRiT13 is an extension of GRAPPA.With a fixed kernel size, rather than just interpolating from
points that were collected, SPIRiTwill use every point in the kernel, regardless of whether or not
it was collected.

SPIRiT interpolates all values (even those that were collected) by solving the following
constrained least-squares problem

EQ-TARGET;temp:intralink-;e007;117;556minimize
θ

1

2
kGθ − θk22 subject to kDθ − yk22 ≤ ε; (7)

where k · k2 denotes the l2 norm, G represents linear interpolation from all values that lie within
the kernel (even those that were not collected), D is the linear transformation that isolates the
sample points that were collected, y is a vector of the values of the collected data, and ε is a bound
on the noise power. Equation (7) can be solved with the Fast Iterative Shrinkage-Thresholding
algorithm (FISTA),20 as we discuss in Appendix B. In Ref. 13, Lustig et al. set ε ¼ 0 and only
solve for the values of the uncollected data, which reduces the computational cost of the opti-
mization, but this is not necessary. A solution that yields a smaller value of the objective function
can be found when a non-zero value of ε is known and used.

Here, again, we present a novel sufficient condition for estimation without error when the
approximation of Eq. (5) is perfectly satisfied and without any noise. Consider the set of collected
data as a directed graph where the location of each Fourier value is a node and the displacement
vectors from each point in the kernel to that location are the directed edges. Accurate interpo-
lation at a location k is possible when there is a path from a collected data point to k such that all
edges of that path satisfy Eq. (5). Practically, any error in the approximation and noise in the
values are amplified with each edge of the path, so shorter paths lead to more accurate
interpolations.

Figure 2 depicts an example that explains this sufficient condition. In this example, we
would like to estimate the value of the blue circle. The directions where condition Eq. (5) are
satisfied are down and downward-left. We could perfectly estimate the value of the blue circle in
two steps: (1) interpolate all values below all sampled values and (2) interpolate all values
downward-left of all known or estimated values. In a noiseless situation, if this process were

Fig. 2 Depiction of accurate interpolation with SPIRiT. For this hypothetical example, the direc-
tions where Eq. (5) is satisfied are down and downward-left. With GRAPPA, the blue circle cannot
be interpolated accurately. With SPIRiT, the value of the blue circle can be estimated by two inter-
polations along the path indicated with the arrows.
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iterated until all unknown values were estimated, then it would solve Eq. (7) with an objective
function value of 0 (the minimum possible value).

3.3 Acceleration Direction Metric
In Sec. 5, we will provide examples where the quality of the reconstruction is significantly
degraded when the sufficient conditions identified are not met. Here, we present a metric that
can be calculated from the FSR that identifies any undersampling directions that do not meet
Eq. (5). Given the FSR and a kernel size, we solve for the interpolation coefficients using two
kernels—one solely in the horizontal direction and one in the vertical direction—of the same size
as the kernel used for reconstruction. The kernel has a 0 in the center, and all other values are 1.
For example, if the desired kernel is 3 × 3, the test kernels look like kh ¼ ½ 1 0 1 � and
kv ¼ kTh , where·

T denotes transpose. We denote the solutions to Eq. (2) with each of these ker-
nels as N⋆

h and N⋆
v , respectively. The acceleration direction metric (ADM) is the relative error of

the linear system

EQ-TARGET;temp:intralink-;e008;114;567kSN⋆ − sfsrk∕ksfsrk: (8)

If the value of ADM is high, then there is not a consistent set of interpolation coefficients for
the FSR in the direction specified by the kernel. If its value is low, then there is a consistent set of
interpolation coefficients and the data can be undersampled in that direction while retaining a
high-quality reconstruction.

4 Experiments
In this paper, we first use Biot-Savart simulations to examine an eight-element birdcage coil
(where we ignore coil coupling or high-frequency effects). We then analyze four different data-
sets: a knee, a brain, an ankle, and a shoulder. All datasets were fully sampled three-dimensional
Cartesian data with two dimensions of phase encodes and one dimension of readout. The data on
the knee were taken from mriData.21 The data of the brain, ankle, and shoulder were released.22

The data were retrospectively downsampled for processing. The data were inverse-transformed
along the readout direction and placed into a hybrid space of ðkx; ky; zÞ. Then, individual slices of
specific z locations were isolated for further processing.

5 Results
Figure 3 shows results from Biot-Savart simulations for an eight-element birdcage coil according
to Ref. 23. The top/bottom subfigures show simulations for an axial/sagittal plane that lies at the
birdcage coil, respectively. The plots isolate single horizontal and vertical lines that lie at the
center of the simulations; the number below each plot is the condition number of the matrix
made by concatenating the vectors depicted in the plot. This condition number is a metric that
indicates how much variation there is between the sensitivity maps across space. A high con-
dition number implies that the solution to Eq. (2) will be heavily dependent on the noise and will
not yield good results when the coefficients are used for interpolation. For both the horizontal and
vertical lines of the axial simulations, the condition number is on the order of 103. Although this
remains the case for the horizontal line of the sagittal simulation, the condition number for the
vertical line is much higher: on the order of 108. By looking at the corresponding plot, it becomes
obvious that the sensitivities are approximately scaled versions of each other and that the problem
of finding coefficients to linearly combine the sensitivity maps so that they approximate a com-
plex exponential is ill-conditioned.

Figure 4 shows reconstructions for an axial slice of a knee with GRAPPA12 and SPIRiT13

using two separate sampling patterns. Both data were retrospectively undersampled at the same
reduction factor of 2; the only difference is the direction of undersampling. This example shows
how the quality can depend on the direction of undersampling, which is present with both
GRAPPA and SPIRiT reconstructions: the quality of the reconstruction with horizontal (ante-
rior-posterior) undersampling is high, whereas the quality of the reconstruction with vertical
(superior-inferior) undersampling is low. Note that the higher values of the g-factor with vertical
undersampling correspond with the lower image quality.
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The sensitivity maps presented in Fig. 5 illuminate why this happens based on the under-
standing presented in Sec. 3—for any specific horizontal location (for any point along an
anterior-posterior line), the coil sensitivities as a function of vertical location are approximately
scaled versions of each other. When undersampled by every other row, GRAPPA and SPIRiTwill
attempt to interpolate unknown values from collected data that lie above and below in the Fourier
domain. With relatively little spatial variation in the coil sensitivities in those directions, there
does not exist a linear combination of coil sensitivities such that they approximate a complex
exponential and the interpolation coefficients do not yield an accurate estimate.

These data were collected with an eight-channel birdcage coil. Therefore, each coil extends
from the most inferior to the most superior portions of the image. Thus, in the superior-inferior

Fig. 4 Reconstructions of sagittal slices of a knee with different sampling patterns. The columns
from left to right are a representation of the sampling indicating the undersampling direction, the
GRAPPA reconstruction, the SPIRiT reconstruction, and the g-factor of the SPIRiT reconstruc-
tions. The top and bottom rows show undersampling in the horizontal (anterior-posterior) and ver-
tical (superior-inferior) directions, respectively. Both sampling masks used a reduction factor of 2.
All reconstructions used a 31 × 31 FSR and a 3 × 3 kernel.

Fig. 3 Biot-Savart simulations of an eight-element birdcage coil. (The top/bottom simulation are
the center axial/sagittal slices for a birdcage coil, respectively). The sensitivity maps of each coil
are shown on the left. The plots on the right show the sensitivities of each coil for a single hori-
zontal/vertical line through the center of the sensitivity maps. The numbers below each plot show
the condition number of a matrix created by concatenating the sensitivities in the plots above.
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(SI) (vertical) direction, there is not enough variation to approximate a complex exponential well.
This same phenomenon happens when imaging other anatomy with a similar coil arrangement;
e.g., imaging the brain with a birdcage coil, as shown in Fig. 6.

Figure 7 shows magnetic resonance (MR) images of an axial slice of the knee; this is the
same dataset as Fig. 4. In this case, the quality of the reconstruction is independent of the under-
sampling direction. Moreover, when simultaneously undersampling in both directions, the

Fig. 6 SPIRiT reconstructions of a sagittal slice of a brain from data collected with an eight-channel
birdcage coil using a horizontal (left) and vertical (right) undersampling mask. Top row: 3 × 3 ker-
nel. Middle row: 5 × 5 kernel. Bottom row: 7 × 7 kernel. All reconstructions with an undersampling
factor of 2 and a 31 × 31 FSR.

Fig. 5 Approximations of the sensitivity maps for each coil in an eight-coil birdcage for the data of
Fig. 4. Note that there are only estimates of the sensitivity in pixels where the magnitude of the
corresponding image is sufficiently high for an accurate estimate.
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quality remains high; though the signal-to-noise ratio has been reduced due to the reduction in
scan time.16,24 Good quality reconstructions after undersampling in both directions (horizontal
and vertical—or anterior/posterior and left/right) indicate that the corresponding optimization
problems to find the interpolation coefficients for GRAPPA and SPIRiT were solved well.
Owing to our understanding that the optimization problem is attempting to find linear coefficients
for the coil sensitivities such that they linearly combine into a weighted complex exponential, the
high quality indicates that this is true for at least one direction identified with the GRAPPA and
SPIRiT kernels.

Figure 8 shows reconstructions of a sagittal slice of an ankle from data collected with an
eight-channel dedicated ankle coil arrangement. The reconstructions of retrospectively down-
sampled data result in a high-quality reconstruction independent of the direction of undersam-
pling. Figure 9 shows the sensitivities of each coil. In contrast to the sensitivity maps of Fig. 5,
the sensitivities exhibit variation in both directions.

We varied reconstruction parameters for GRAPPA and SPIRiT reconstructions of the knee
and brain to include kernel sizes of 5 × 5 and 7 × 7 and to include an undersampling factor of ∼3.
In all cases, the same trend was observed: the quality of the reconstruction is highly dependent on
the undersampling direction (results are not shown).

Table 1 shows ADM values for the knee, brain, and ankle data studied in this paper. All
results conform to the expectations that undersampling directions which yield a high ADM cor-
respond to a poor quality image. The ADM values for those undersampling directions that
yielded a poor-quality image are larger than those that yielded a high-quality image. The axial
slice of the knee, which yielded a high-quality reconstruction independent of the undersampling
direction, has a small ADM for both undersampling directions. For the data we analyzed, a
threshold on the relative error of 0.4 would identify directions that would yield a poor-quality

Fig. 7 Axial slices of the knee. The columns, from left to right, are the reconstruction with fully
sampled data, representations of the sampling masks used, the GRAPPA reconstructions, the
SPIRiT reconstructions, and the g-factors of the SPIRiT reconstructions. All images are size
320 × 256. The top and middle rows have undersampling factors of two in a single direction (hori-
zontal and vertical, respectively); the bottom row has a reduction factor of approximately two in
both directions (for a total reduction factor of approximately four). All reconstructions from
GRAPPA and SPIRiT were made with a 31 × 31 FSR and a 7 × 7 kernel.
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image. This, however, is too small a dataset for us to make that a conclusion. Instead, we present
this as a preliminary result and hope to pursue it in future work.

Figure 10 shows results for an axial slice of a shoulder from data collected with a 16-channel
shoulder array. Note that because the coils cover the three-dimensional structure of the shoulder,
many of the coils do not significantly sense the axial slice analyzed. The mean-squared error for
the reconstructions with horizontal and vertical acceleration are 4.7 · 10−11 and 5.3 · 10−11,
respectively. Due to the differences in spatial variance of the sensitivities, the quality of the recon-
struction differs when accelerating horizontally or vertically.

Fig. 8 SPIRiT reconstructions of retrospectively downsampled ankle data. Top: horizontal under-
sampling pattern. Bottom: vertical undersampling pattern. Left: reduction factor of 2, 3 × 3 kernel.
Center: reduction factor of 3, 3 × 3 kernel. Bottom: reduction factor of 3, 5 × 5 kernel. All recon-
structions with a 31 × 31 FSR.

Fig. 9 Approximations to the individual sensitivity maps for the data of Fig. 8. Note that there are
only estimates of the sensitivity in pixels where the magnitude of the corresponding image is suf-
ficiently high for an accurate estimate.
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6 Conclusion
We have presented a rigorous physical reasoning that shows how the direction of undersampling
can impact the reconstruction quality of PILP. Having the requisite spatial variation in the coil
sensitivities is a sufficient condition for a high-quality reconstruction based on linear predict-
ability. Another previously known sufficient condition is that the support of the imaged object
be less than the field of view of the image.4 Note further that this condition of support is met by
the data studied in this paper; however, the quality remains dependent on the direction of under-
sampling. This indicates that, for the data studied, the more important consideration is the direc-
tion in which the coil sensitivities can be linearly combined to approximate a complex
exponential.

The linear combination of sensitivities only needs to approximate a complex exponential
over the support of the image. Generally, with MRI, the support of the image is a strict subset
of the field of view. Consider the reconstruction of the ankle; there is little coil sensitivity in the

Table 1 Examples of the ADM of Eq. (8) applied to specific cases.
The metric values are large in undersampling directions that lead to
poor-quality images and small in undersampling directions that lead
to high-quality images.

Data Kernel ADM (vertical) ADM (horizontal)

Knee—sagittal slice 3 × 3 55.0% (large) 17.1% (small)

Knee—axial slice 3 × 3 25.2% (small) 26.6% (small)

Ankle—sagittal slice 3 × 3 8.1% (small) 5.0% (small)

Brain—sagittal slice 3 × 3 61.7% (large) 5.0% (small)

Brain—sagittal slice 5 × 5 52.6% (large) 3.9% (small)

Brain—sagittal slice 7 × 7 47.3% (large) 3.6% (small)

Fig. 10 Results for data captured with a 16-coil shoulder array. (a) Estimates of the sensitivity
maps. (b) The fully sampled reconstruction was compared with reconstructions with 3× acceler-
ation in the horizontal and vertical directions. (c) The difference between the accelerated and the
fully sampled reconstruction for the area outlined by the white box.
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superior-anterior quadrant of the image. However, there is plenty of coil variation over the other
quadrants, which is where the ankle and leg are located. This is why the reconstruction of the
ankle is robust regardless of the direction of undersampling.

The results presented indicate that the ADM can be used to determine undersampling direc-
tion(s) that will yield a poor-quality reconstruction so that those undersampling directions could
be avoided during the scan. In the future, we hope to test this metric on a much larger dataset to
ensure that it is reliable. We will analyze its sensitivity to field strength, patient movement, and
size of the FSR. If reliable, we hope to create an adaptive algorithm that uses the FSR to identify
good undersampling direction(s) prior to collecting the outer portion of the Fourier domain (that
region that exists outside of the FSR). By doing so, PILP would become robust to an inappropri-
ately selected undersampling direction. Although the proposed ADM provides a method for
determining appropriate directions of acceleration, it does not indicate which portions of the
image experience high or low SNR. G-factor analysis is perfectly suited for this purpose and
can be done after the data are collected.

In conclusion, we showed that the quality of PILP algorithms, such as GRAPPA and SPIRiT,
depends on the direction of undersampling. This directional dependence is related to the amount
of spatial variance in the individual coil sensitivities. The impact on the quality of reconstructions
is the difference between having an image of diagnostic quality or not.

7 Appendix A: AUTO-SMASH
In a coil array with J elements, the j 0th coil has a distinct sensitivity function Cj∶R2 → C. A
composite sensitivity is generated as a linear combination of individual coil sensitivities with

linear coefficients nð0Þj as follows: Ccomp
0 ðx; yÞ ¼ P

J
j¼1 n

ð0Þ
j Cjðx; yÞ.

The composite two-dimensional MR signal takes the form

EQ-TARGET;temp:intralink-;e009;114;433

Scompðkx; kyÞ ¼
ZZ

dxdy
XJ
j¼1

nð0Þj Cjðx; yÞρðx; yÞe−iðkxxþ kyyÞ

¼
ZZ

dxdyCcomp
0 ðx; yÞρðx; yÞe−iðkxxþ kyyÞ

¼ FfCðcompÞ
0 ρgðkx; kyÞ: (9)

Suppose that there is another set of complex weights fnðmÞ
j g such that the linear combination

of coil sensitivities yields the following composite sensitivity

EQ-TARGET;temp:intralink-;e010;114;319Ccomp
m ðx; yÞ ¼

XJ
j¼1

nðmÞ
j Cjðx; yÞ ≈ Ccomp

0 expðimΔkyyÞ: (10)

Importantly, this approximation only needs to be valid over the support of the image. With
these linear coefficients, the composite MR signal becomes

EQ-TARGET;temp:intralink-;e011;114;250 XJ
j¼1

nðmÞ
j Sjðkx; kyÞ ¼

ZZ
Ω
dxdy

�XJ
j¼1

nðmÞ
j Cjðx; yÞ

�
ρðx; yÞe−iðkxxþ kyyÞ

≈
ZZ

Ω
dxdyCcomp

0 eimΔkyyρðx; yÞe−iðkxxþ kyyÞ

¼ FfCcomp
0 ρgðkx; ky −mΔkyÞ; (11)

where Ω is the support of ρ. The nðmÞ coefficients serve to interpolate Fourier values at a distance
of mΔky. Note that for the special case where C

comp
0 ≈ 1, the Fourier coefficients are those of ρ.

The innovation of AUTO-SMASH is to use lines of an FSR centered on the 0 frequency to

estimate the weights fnðmÞ
j g for Eq. (10). These FSR data, SACRj , are shifted exactly by the amount

mΔky. The composite signal generated using weights fnð0Þj g according to Eq. (9) yields
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EQ-TARGET;temp:intralink-;e012;117;736Scompðkx; ky −mΔkyÞ ¼
XJ
j¼1

nð0Þj SACSj ðkx; ky −mΔkyÞ: (12)

Alternatively, following Eq. (11), we can write

EQ-TARGET;temp:intralink-;e013;117;686Scompðkx; ky −mΔkyÞ ¼
XJ
j¼1

nðmÞ
j Sjðkx; kyÞ: (13)

Equating (12) and (13) yields

EQ-TARGET;temp:intralink-;e014;117;629

XJ
j¼1

nðmÞ
j Sjðkx; kyÞ ¼

XJ
j¼1

nð0Þj SACSj ðkx; ky −mΔkyÞ. (14)

We write the right-hand side of Eq. (14) simply as Scompðkx; ky −mΔkyÞ to reinforce that is
the final, combined image produced using the original weights. For each kx, this is a (complex)
scalar, and the left-hand side is a linear combination of the collected MR signals. To determine
nðmÞ, minimize kΣnðmÞ − bk2, where

EQ-TARGET;temp:intralink-;sec7;117;535Σ ¼

2
66664
S1ðkx1 ; kyÞ S2ðkx1 ; kyÞ : : : SJðkx1 ; kyÞ
S1ðkx2 ; kyÞ S2ðkx2 ; kyÞ : : : SJðkx2 ; kyÞ

..

. . .
. ..

.

S1ðkxnx ; kyÞ S2ðkxnx ; kyÞ : : : SJðkxnx ; kyÞ

3
77775;

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
nx×J

EQ-TARGET;temp:intralink-;sec7;117;434nðmÞ ¼

2
66664
nðmÞ
1

nðmÞ
2

: : :
nðmÞ
J

3
77775;

|fflfflfflfflffl{zfflfflfflfflffl}
J×1

b ¼

2
6664
Scompðkx1 ; ky −mΔkyÞ
Scompðkx2 ; ky −mΔkyÞ

: : :
Scompðkxnx ; ky −mΔkyÞ

3
7775:

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
nx×1

Once the weights nðmÞ are determined, the matrix-vector multiplication ΣnðmÞ for Σ con-
structed for a specific ðkx; kyÞ will estimate the composite Fourier value at ðkx; ky −mΔkyÞ.

8 Appendix B: FISTA
FISTA solves problems of the formminimizeθ F ðθÞþGðθÞwhereF is differentiable and G has a
simple proximal operator.25 Let FðθÞ ¼ 1

2
kGθ − θk22, which is differentiable with a gradient

equal to ðG − IÞTðG − IÞθ. Let GðθÞ ¼ IB½θD−y;ε�ðθÞ, where θD ¼ Dθ. That is, G is the indicator
function that equals 0 whenever the collected elements of θ are within an ε ball of y, and other-
wise is equal to infinity. The proximal operator of G is a shrinkage function; it brings the elements
of θD closer to y until the vector lies within the ball. With these definitions, minimizing F þG is
equivalent to solving Eq. (7). This can be done with FISTA.
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