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A B S T R A C T   

We present a fast method for generating random samples according to a variable density poisson-disc distri
bution. A minimum parameter value is used to create a background grid array for keeping track of those points 
that might affect any new candidate point; this reduces the number of conflicts that must be checked before 
acceptance of a new point, thus reducing the number of computations required. We demonstrate the algorithm’s 
ability to generate variable density poisson-disc sampling patterns according to a parameterized function, 
including patterns where the variations in density are a function of direction. We further show that these 
sampling patterns are appropriate for compressed sensing applications. Finally, we present a method to generate 
patterns with a specific acceleration rate.   

1. Introduction 

In Magnetic Resonance Imaging (MRI), multiple coils and compressed 
sensing have both reduced the number of samples required to generate 
diagnostic quality images. The multiple coils provide additional spatial 
encoding that is used to interpolate missing k-space data points (a tech
nique commonly called parallel imaging) [1–3]. Compressed sensing takes 
advantage of the a priori knowledge that most of the values of the image 
are approximately 0 after a sparsifying linear transformation (e.g. a 
Daubechies Wavelet transform) [4,5]. When the system matrix satisfies 
specific properties (e.g. the Restricted Isometry Principal, the Restricted 
Isometry Principal in Levels, or the Mutual Coherence Conditions) then 
the error on the final image is bounded [6–8]. Remarkably, these con
ditions can often be achieved with a random sampling pattern [9]. 
Compressed sensing has been used in MRI with great success [4,10,11]. 

When combining multi-coil imaging with compressed sensing, one 
wants to employ a random sampling pattern to satisfy the compressed 
sensing requirements, but still keep samples far enough from each other 
to take advantage of the spatial encoding of the multiple coils. A poisson- 
disc sampling pattern can be used to simultaneously satisfy these 
properties in a three-dimensional acquisition with phase encoding in 
two dimensions [10]; each point of the pattern represents a readout line 

in the third dimension [12]. It is desirable that the pattern generation 
algorithm be fast in order to permit investigation of different sampling 
distributions and determine the advantages and disadvantages of each 
one. Furthermore, it should accommodate densities that depend on di
rection to account for different coil configurations. And finally, the 
sampling pattern should satisfy a desired overall acceleration factor. 

Recall that a poisson-disc sampling pattern is one where the points 
are no closer than a specified distance r apart, where r may be a function 
of location and direction. The simplest dart throwing algorithm for 
generating a poisson-disc sampling pattern (randomly choose a point, 
verify that the point is not too close to any existing point, repeat) is a 
slow process [13]. Other methods are more efficient, but impose addi
tional requirements (e.g. a mesh defining a surface of interest, or a tiling 
of the space where the density along the edges of the tiles may be 
noticeably different) [14]. These are confounding effects that are not 
required for sample generation in MRI, where the region of k-space of 
interest is a simple rectangular subset of a Euclidean space. In [15], 
Bridson described a fast O (n) algorithm for generating a poisson-disc 
sampling pattern with a constant density. In [16], Tulleken adapted 
this algorithm to accommodate a variable density sampling pattern 
based on a priori knowledge of the maximum poisson-disc radius 
parameter. Tulleken’s method is O

(
n2). Notably, this method cannot 
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accommodate a sampling density that depends on direction. 
In many cases of sample generation with MRI, we know the mini

mum distance between samples a priori. In this paper, we alter the 
methods of [15,16] to take advantage of this knowledge. We present a 
faster method of generating samples according to a variable density 
poisson-disc in a rectangular subset of a Euclidean space with an arbi
trary number of dimensions. We make three novel contributions for 
generating variable density poisson-disc sampling patterns to be used 
with compressed sensing in MRI.  

• We present a more computationally efficient and faster method than 
the state of the art.  

• We present a computationally efficient method to accommodate 
rotationally asymmetric sampling density, permitting more acceler
ation in one direction than another.  

• We present an automatic method to generate a sampling pattern with 
a desired overall acceleration rate, even with an asymmetric sam
pling density. 

2. Methods 

2.1. Background 

The Bridson method of [15] reduces the computational time 
dramatically over the dart throwing algorithm by utilizing a background 
grid. Assuming a fixed poisson-disc parameter r, the method partitions 
the space into a set of cubes where the edges have length r/

̅̅̅
d

√
(where 

d is the number of dimensions of the space). The cube edge is set to this 
length so that the cube’s diagonal has length r; thus, each cell can 
contain at most 1 point. For each new point, then, one need not check 
the distance to all other points. Instead, only those points that are 
indexed in grid cells within range (as illustrated in the Fig. 1a, where r =
rmax) need to be checked [16]. 

Algorithm 1 Variable Poisson-Disc Sampling.    

Fig. 1. a) For a new point (shown with a black dot), 
only those cells intersected by the red circles (shaded 
blue) can contain points close enough to violate the 
distance threshold. If the point were in n dimensions 
instead of 2 dimensions, the length of each side of all 
cubes would be rmax/

̅̅̅
n

√
. b) A new candidate point yj 

with poisson-disc parameter rj is illustrated with the 
black dot. In this figure, ceiling(rj/rmin) = 4. The red 
circles have diameter 4rmin and are tangent to the 
corner of the cell containing yj. The blue squares are 
those cells that could contain points that are within rj 
of yj. If the point were in n dimensions instead of 2 
dimensions, the length of each side of all cubes would 
be rmin/

̅̅̅
n

√
. (For interpretation of the references to 

color in this figure, the reader is referred to the web 
version of this article.)   
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When creating candidate points, one must choose points randomly 
on a spherical annulus. The number of points chosen is denoted by k. In 
[15], Bridson suggests a value of k = 30; we have found that the pro
cessing is faster with comparable results in two dimensions when k = 10. 
To choose points in two dimensions, construct a vector with angle (in 
radians) chosen uniformly at random on [− π,π) and magnitude chosen 
uniformly at random on [r,2r]. To sample a point at random in n di
mensions, generate a vector with n elements where the value of each 
element is a realization of a normally distributed random variable. Since 
the normal distribution is rotationally symmetric, every direction has 
equal probability density. Then, scale this vector to a magnitude chosen 
uniformly at random on [r,2r]. 

The method by Tulleken of [16], detailed in Alg. 1, accommodates a 
variable density poisson-disc sampling pattern (meaning that the 
parameter r changes as a function of location) by altering the back
ground array so that 1) each element of the grid accepts a list of points 
and 2) the cell size must be computed from the maximum possible 
parameter value (see Fig. 1a). The index of each new valid point is added 
to the list of the background grid element that contains the new point. 

Though this would result in a realization of the desired sampling 
pattern, it is inefficient, as the following thought experiment illustrates. 
Suppose that r is small near the center of the image and increases as the 
distance from the center increases. In this case, the largest values of r 
would be attained at the corners of the region. Indeed, this is the most 
common use case for compressed sensing MRI applications. These values 
could be so large that the rectangular region of interest would be divided 
into a small number of large grid cells, meaning that many points would 
be listed within each grid cell and all of those points would need to be 

checked with each additional candidate point. The computational cost 
degenerates to that of the extremely slow dart throwing algorithm. In 
section 2.2, we explain how to overcome this inefficiency. 

2.2. Fast algorithm 

For the fast algorithm, it is assumed that a positive minimum bound 
on r exists: rmin > 0. This is almost certainly the case with MRI. The k- 
space samples need not be closer than the inverse of the field-of-view. 
Moreover, with compressed sensing, the center region of k-space is 
often fully sampled (meaning that samples are separated by a distance 
equal to the inverse of the field-of-view) [10,12]. For these applications, 
the density of samples do not vary unless they are located some positive 
distance from the origin. Thus, for any variable density scheme that 
reduces the sampling density as distance from the origin increases, the 
size of the fully-sampled center region can be used to determine rmin. 

The region of interest is partitioned into a grid of cubes where the 
edges all have length rmin/

̅̅̅
d

√
. (Note that the background grid must be 

re-defined for different values of rmin.) Grid elements do not contain the 
indices of points that fall within their boundary. Instead, each grid 
element contains a list of indices of those points that might have their 
threshold distance violated by a point in the grid cell. When a new point 
is considered as a candidate for the sample distribution, its distance is 
checked against all of those points with indices located in the grid cell 
that contains the new point. If the candidate point is not too close to any 
existing points, then its index is added to all of those grid cells where its 
distance threshold reaches (as illustrated in Fig. 1b). The entire algo
rithm is specified in Alg. 2. 

Algorithm 2: Fast Variable Density Poisson-Disc Sampling. 
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We will now prove that there is a computational advantage to the fast 
algorithm over Alg. 1. We will write the proof for d = 1 in hopes that the 
extension to higher dimensions is clear. The burden comes from the 
computations of distances between a candidate point and existing 
points. The slow dart-throwing algorithm computes the distance be
tween each candidate point and all existing points. Both Alg. 1 and Alg. 2 
reduce the number of distance computations by taking advantage of a 
background grid. We will show that the fast algorithm can result in 
fewer distance computations. 

Let zc be the location (on a line) of a new candidate point; without 
loss of generality, assume zc ∈ [− rmin/2, rmin/2]. With Alg. 1, an existing 
point at location ze is compared to the candidate point if ze ∈ [− (3/2) 
rmax, (3/2)rmax], regardless of what the value is for the poisson-disc 
parameter of the candidate point. With the fast algorithm, an existing 
point is compared to the candidate point only if 

ze ∈

[

rmin

(
− 1
2

− ⌊ rc

rmin
⌋
)

, rmin

(
1
2
+ ⌊ rc

rmin
⌋
)]

,

where rc is the value of the poisson-disc parameter for the candidate 
point. Note that 

rmin

(
1
2
+ ⌊ rc

rmin
⌋
)

≤
rmin

2
+ rmin⌊ rmax

rmin
⌋ ≤

rmin

2
+ rmax.

Since rmin ≤ rmax, 
[

rmin

(
− 1
2

− ⌊ rc

rmin
⌋
)

, rmin

(
1
2
+ ⌊ rc

rmin
⌋
)]

⊂[ − (3/2)rmax , (3/2)rmax ]. (1) 

It is not necessarily the case that Alg. 2 calculates fewer distances 
than Alg. 1. For example, if the poisson-disc parameter is constant, then 
both Alg. 1 and Alg. 2 reduce to the Bridson algorithm. However, by (1), 
the fast Alg. 2 cannot calculate any more distances than Alg. 1. If the 
poisson-disc parameter changes significantly over the space, then it will 
likely calculate fewer distances, which makes the algorithm more effi
cient. We show that this is the case for compressed sensing in section 3. 

For the results presented in this work, we used the following function 

for the poisson-disc parameter r (parameterized by γ): 

rγ(x) =
‖ x‖2 + 0.15

γ
, (2)  

where ‖ ⋅ ‖2 represents the L2 norm. For this function, rmin = 0.15/γ and 
rmax = (‖xcorner‖2 + 0.15)/γ where xcorner is any corner of the sampling 
domain. 

2.3. Sampling density that is based on direction 

The rectangular subset of interest in k-space is usually the 
[− 0.5,0.5]d cube.1 (An exception would be a Homodyne sampling 
pattern, where the rectangular region is a little more than half of this 
cube [17].) As discussed, it may be desirable to alter the density dis
tribution of points as a function of direction. That is, in addition to the 
poisson-disc parameter r being a function of location, it would also be a 
function of radial direction to take advantage of coil placement geom
etry. For a general function of radial direction, this is a computationally 
challenging task since it requires determining the direction between 
points and evaluating this function. However, in MRI, it is usually the 
case that we are interested in acceleration rates that differ along the axes 
of the rectangular region. For example, with a birdcage coil, the spatial 
encoding of each coil differs significantly in the transverse plane but 
differs little in the longitudinal direction. Therefore, a higher accelera
tion is possible in the transverse plane than in the longitudinal direction. 
An example of this can be seen in Fig. 4a. 

Since we are interested in acceleration rates that differ along the axes 
of the rectangular region, a simple trick avoids determining the angle 
between points and evaluating the parameter function. For simplicity, 
we will consider a two dimensional case. Suppose one wants to under
sample the second dimension by an additional factor of ν (meaning the 
density of samples will be greater in the first dimension than in the 
second). Then, one can generate a variable density poisson-disc sam
pling pattern on the region [− 0.5,0.5] × [− 0.5/ν,0.5/ν] quickly with a 
radially symmetric poisson-disc parameter using Alg. 2. After the points 
are generated, scale the resulting pattern by ν in the second dimension to 

Fig. 2. Variable density poisson-disc sampling patterns generated with the fast algorithm of Alg. 2.  

1 Set multiplication is the Cartesian cross product. 
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generate a pattern of points on [− 0.5,0.5]2. 

2.4. Specifying the acceleration rate 

The acceleration rate of a sampling pattern is the number of samples 
acquired divided by the number of samples required for full sampling. It 
is often convenient to be able to specify an overall acceleration rate and 
attain a corresponding sampling pattern. In this section, we describe a 
method to attain this goal. 

In order to do so, we require a poisson-disc parameter function rγ : ℝd 

→ ℝ parameterized by γ ≥ 0 such that r decreases monotonically with 
increasing γ. (Equivalently, the overall acceleration rate increases with 
increasing γ.) Note that (2) satisfies this property. Then, with the 
computational efficiency of Alg. 2, we can now specify an overall ac
celeration rate α and determine the desired sampling pattern with a 
binary search algorithm in a reasonable amount of time. (The total 
computational time is the time of any single iteration multiplied by the 
number of iterations in Alg. 3.) 

In order to use the binary search, one must supply bounds γmin and 
γmax. Since γ is positive, γmin = 0 is a lower bound. The γ that corresponds 
to rmin would be γmax. The complete search is specified in Algorithm 3. 

Algorithm 3: Find Pattern for Specified Acceleration Rate.    

3. Results 

Fig. 2 shows variable density sampling patterns generated with Alg. 2 
using the poisson-disc parameter function of (2) for γ ∈

{50,75,100,125,150} and additional directional undersampling of 3. As 
expected, as γ increases, the overall acceleration rate (equal to the 
number of samples divided by the size of the domain) decreases. 

Table 1: Run times for generating variable density poisson-disc 
sampling patterns with Alg. 1 and Alg. 2. Time is reported in millisec
onds. In all cases, Alg. 2 is faster by 30 − 50%. 

In Fig. 3, we present a comparison of the results from Alg. 2 to results 
from Alg. 1 with γ = 150 and without any additional directional 
undersampling. For both, we created a Voronoi partition of the domain 
and plotted the area of each cell versus distance of the point from the 
origin in Fig. 3a. The distributions of area versus distance are very 
similar. In Fig. 3b, we show the magnitude of the point spread functions 
for both algorithms. Again, they are similar; the mean square difference 
is 1.1 × 10− 6. The fast algorithm offers a computational benefit without 
sacrificing quality. 

Figs. 4 and 5 show how the sampling mask could be used with MRI 
using knee and ankle data, respectively. The data of Fig. 4 was taken 
from mridata.org [18]. The data for Fig. 5 was collected with a 
clinical 3 Tesla scanner and an 8-channel ankle coil. Both of these 
datasets consist of fully sampled three-dimensional data with two di
mensions of phase encodes and a single dimension of readout. An in
verse Fast Fourier Transform was applied in the readout direction 
placing the data in a hybrid space [19,20]; further processing was only 
done on a single slice (though multiple slices could also have been 
reconstructed). The data was retrospectively undersampled with the 
relevant sampling pattern. The SAKE+L1-ESPIRiT algorithm was used to 
reconstruct data that was retrospectively subsampled with the variable 
density poisson-disc sampling masks [21,22]. Subfigure (a) shows the 
fully sampled reconstruction from each individual coil, (b) shows the 
sum-of-squares reconstruction with fully sampled data, and (c) shows 

Table 1 
This table compares the time required to compute the variable density poisson- 
disc sampling pattern with Alg. 2 to the time required by Alg. 1 for the sampling 
patterns shown in Fig. 2. The improvement in run time is between 30 − 50%. 
The algorithms were implemented in C on a 2012 Macbook Pro with a 2.5 GHz 
Intel i7 processor.   

Processing Time (ms): Alg. 2 / Alg. 1  

γ = 50 γ = 75 γ = 100 γ = 125 γ = 150 

(3,1) 10 / 20 20 / 40 40 / 70 60 / 110 110 / 150 
(1,1) 20 / 30 50 / 80 100 / 140 150 / 220 230 / 340 
(1,3) 10 / 20 20 / 40 40 / 70 70 / 110 110 / 150  
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Fig. 4. Fully sampled reconstructions of an 8-coil extremity coil. The sensitivities of the coils in the anterior/posterior differ, whereas the sensitivity in the superior/inferior 
direction are approximately uniform for all coils. a) The fully sampled reconstructions for each of the 8 coils. b) The sum-of-squares reconstruction with fully sampled data. 
c) The SAKE+L1-ESPIRiT reconstruction of the data retrospectively subsampled with the sampling pattern of Fig. 2 with γ = 125 and undersampling of (3,1). 

Fig. 3. (a) Area of the Voronoi cell plotted against distance from the origin for each sample point with γ = 150 for the fast algorithm (blue) and the Tulleken al
gorithm (red). The distribution of points of the two algorithms is similar, indicating that they are generating sampling patterns of similar quality. (b) The top row 
shows the magnitude of the full point spread function and the magnitude of the difference between them. The bottom row zooms in on the region of the white box. 
There is not a significant difference between the point spread functions of the sampling patterns. (For interpretation of the references to color in this figure, the reader 
is referred to the web version of this article.) 

Fig. 5. Fully sampled reconstructions of an 8-channel ankle coil. a) The fully sampled reconstructions for each of the 8 channels. b) The sum-of-squares recon
struction with fully sampled data. c) The SAKE+L1-ESPIRiT reconstruction of the data retrospectively subsampled with the sampling pattern of Fig. 2 with γ = 100 
and no directional undersampling. 
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the SAKE+L1-ESPIRiT reconstruction from retrospectively subsampled 
data. The SAKE+L1-ESPIRiT reconstruction is very similar to the fully 
sampled sum-of-squares reconstruction. 

Fig. 6 shows patterns generated with specific accelerations using Alg. 
3. Both Alg. 1 and Alg. 2 were used as the underlying method to 
determine the sampling pattern. A tolerance of 0.01 in the acceleration 
factor was permitted. Indeed, sampling patterns with the specified ac
celeration rate were generated. The sampling patterns generated with 
Alg. 1 and Alg. 2 are qualitatively similar. 

In the spirit of reproducible research, we provide an implementation 
in C for the algorithms described; the software package can be down
loaded from: https://github.com/ndwork/fastVDPD_C. 

4. Discussion and conclusion 

In this work, we presented a fast algorithm for generating a variable 
density poisson-disc sampling pattern, we show how the method can be 
adapted to permit a further directional undersampling, and we pre
sented a method for generating a sampling pattern with a specific ac
celeration factor. Having a fast algorithm for creating variable density 
poisson-disc sampling patterns will empower future researchers to 
investigate different sampling distributions and determine the advan
tages and disadvantages of each one. Additionally, different sampling 
patterns can be generated for different collections, which may be 
beneficial for some applications. 

When selecting candidate points around an existing point, it may be 
the case that the candidates are unluckily chosen so that they conflict 
with existing points, but other candidate points could have been created 
that would not have. Thus, the realized set of samples is not guaranteed 
to be maximal (where a maximal realization is one where the points are 
as dense as possible) [23]. However, the probability that the realization 
is maximal is typically very high (for sufficiently large values of k) [24]. 

In this paper, we have shown that a simple scaling permits a 
computationally efficient method for generating patterns with direc
tional undersampling. A more general transformation can be used to 
create variations with more interesting patterns. For example, an affine 
transformation (or even any homeomorphism) could be used to generate 
directional sampling patterns. The applications to MRI of such a tech
nique are not obvious. 

It may be possible to further reduce the speed of sample generation 
by using parallelization to take advantage of multiple processing cores 
[25]. Additionally, it may be useful to adapt this algorithm to generate 
samples according to a variable density poisson-disc distribution on a 

surface [24,26]. We leave these prospects as possibilities for future 
work. 
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