# EE 102A - Assignment 1

## Nicholas Dwork

**Problem 1.** Let x be defined as shown in the figure below.



Draw the following signals:

a) 
$$x\left(2\left(-t+\frac{1}{2}\right)\right)$$
  
b)  $x\left(\frac{t-1}{2}\right)$ 

b) 
$$x\left(\frac{t-1}{2}\right)$$

Problem 2. Step Function and Rect

The unit step function u is defined as

$$u(x) = \left\{ \begin{array}{ll} 0 & x < 0 \\ 1 & x \ge 0 \end{array} \right..$$

The rect function  $\Pi$  is defined as

$$\Pi(x) = \begin{cases} 1 & |x| < 1/2 \\ 0.5 & |x| = 1/2 \\ 0 & |x| > 1/2 \end{cases}.$$

Express  $\Pi$  as a simple combination of (modified) unit step functions.

**Problem 3.** Even and Odd

- a) Show that any real function f can be written as a sum of an even function  $f^{\mathrm{even}}$  and an odd function  $f^{\text{odd}}$ .
- b) Find the even and odd decomposition of the function x from the first problem.
- c) Find the even and odd decomposition of this signal:



#### Problem 4.

- a) Express  $\cos(\omega t)$  as a simple function of complex exponentials.
- b) Express  $\sin(\omega t)$  as a simple function of complex exponentials.

**Problem 5.** Write a Matlab function that accepts three (x,y) points and returns the area of a triangle. The prototype of the function should be as follows:

Provide your code and show two test cases of your code working.

Hint: there's a property of cross product that's very relevant here.

Problem 6. Calculate the derivative and antiderivative of each of the following expressions:

- a) (Just the derivative)  $f(x) = \int_{-\infty}^{x} \exp(-i 8\gamma) d\gamma$
- b)  $f(x) = 18 \exp(-i 2\pi x)$
- c)  $f(x) = \exp(-i8x)\cos(2\pi x)$
- d)  $f(x) = i\cos(2\pi x)\sin(3\pi x)$

**Problem 7.** Find  $\int_{-\infty}^{\infty} e^{-\pi x^2} dx$ .

**Problem 8.** The variable x is a complex number.

- a) How many unique square roots of x exist? (Note: if  $x = k \angle \theta$  and  $y = k \angle \theta + 2\pi$  then x = y.)
- b) Find all the fifth roots of 1.
- c) Find all the fifth roots of 1 + 1i.

#### **Problem 9.** Periodic Functions

- a) Let  $x:\mathbb{R}\to\mathbb{C}$  be an odd periodic function with fundamental period T. What is the value of x(3T)?
- b) Let  $x_1, x_2 : \mathbb{R} \to \mathbb{C}$  be two periodic functions with periods  $T_1$  and  $T_2$ , respectively. What relationship must  $T_1$  and  $T_2$  satisfy so that  $x_1 + x_2$  is also periodic? What is the period of  $x_1 + x_2$  if that relationship is satisfied?
- c) Find a function where any real number serves as a period of that function. What can you say about any such function?

**Problem 10.** Suppose  $x_1 = a_1 + i b_1$  and  $x_2 = a_2 + i b_2$  are complex numbers.

- a) Derive an algebraic expression for  $x_1 x_2$  in terms of  $a_1, b_1, a_2$ , and  $b_2$  based on the definition of complex multiplication provided in class.
- b) Given that division is the inverse of multiplication, derive an algebraic expression for  $x_1/x_2$  in terms of  $a_1, b_1, a_2$ , and  $b_2$ .

#### Problem 11.

- a) Prove that for any real number a,  $a \cdot 0 = 0$  (where  $\cdot$  represents multiplication).
- b) Either prove or disprove that for any complex number a,  $a \cdot 0 = 0$ .

**Problem 12.** Either prove or disprove the statement "The function  $h(f) = \exp(i 2\pi f)$  is a periodic function." If it is periodic, what is the fundamental period of h?

**Problem 13.** Evaluate the following integral (where  $m, n \in \mathbb{Z}$ )

$$\frac{1}{P} \int_{p_0}^{p_0+P} \exp\left(i2\pi \frac{nx}{P}\right) \exp\left(-i2\pi \frac{mx}{P}\right) dx.$$

2

## **Problem 14.** The energy of a function x is

$$E_x = \int_{-\infty}^{\infty} |x(\gamma)|^2 d\gamma.$$

A function x is an energy function means  $E_x$  is defined and non-zero.

The power of a function  $\boldsymbol{x}$  is

$$P_x = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(\gamma)|^2 d\gamma.$$

A function x is a power function means  $P_x$  is defined and non-zero. Note that the power  $P_x$  is the average energy.

Determine whether the following functions are energy and/or power functions.

- a)  $x(t) = e^{-|t|}$
- $\mathbf{b}' \ x(t) = \frac{1}{\sqrt{t}} u(t-1)$
- c)  $x(t) = e^{-|t|} \cos(2\pi t)$
- $d) x(t) = e^t u(-t)$

Note that  $u: \mathbb{R} \to \mathbb{R}$  is the *step function* defined as follows:

$$u(t) = \left\{ \begin{array}{ll} 1 & t \geq 0 \\ 0 & \text{otherwise} \end{array} \right. .$$

### **Problem 15.** Energy and Power

- a) What is the Power of an Energy function?
- b) What is the Energy of a Power function?