EE 102A - Assighment 8

Nicholas Dwork

Problem 1. The vector DFT{x} is imaginary and odd. What value is the value of z[0]?

Problem 2.  Consider a function f : [-L/2,L/2] — C. The function f is isomorphic to its
periodic extension f,... As we've discussed, there is no information gained or lost by working with
the periodic extension rather than the original function. We can compute the Fourier Series of f
and we can compute the Fourier Transform of f, .. Are the two related? If so, how?

Problem 3. Nuclear Magnetic Resonance (NMR) - with help from David Zeng

Nuclear Magnetic Resonance is a physical process where atoms absorb magnetic energy and release
it in a characteristic way (that depends on the atomic structure of the molecule containing the
atoms). The figure below shows a Varian Unity Inova 900 MHz, 21.1 Tesla NMR spectrometer.

Each atom absorbs energy at a specific frequency, called the Larmor frequency of the atom. That
frequency may be altered slightly due to the nearby atoms in a molecule that affect the local
magnetic field; this is called chemical shift. Once the energy is absorbed, the atoms begin emitting
the absorbed energy in the form of an electromagnetic wave at that atom’s particular frequency
(Larmor frequency + chemical shift). By observing the frequencies emitted, we can use NMR to
identify the molecules in a sample.

The process of NMR characterization is to emit a magnetic wave with a spectrum encompassing all
molecules of interest. Some of this energy gets absorbed by the atom and re-emitted. An antenna
is used to capture the signal emitted by the sample.

Download the data at the following address:
www.stanford.edu/ "ndwork/teaching/1706ee102a/hmwk/data/NMRSpec.mat

The variable st contains an NMR signal; the data sampling rate is 2000 samples/s. Plot the
magnitude and phase of the NMR spectrum (versus frequency). Can you distinguish the peaks
corresponding to Creatine (around 209 Hz) and Choline (around 185 Hz)?

Problem 4. You're Pushing My Buttons! - with help from David Zeng



(Not that) long ago, telephones were made out of analog hardware components. Initially, people
would talk into the phone and ask the operator to connect them to the party they wanted to talk to.
Eventually, a system of buttons was used to designate the receiving party. The figure below shows
a phone from the 1980s that might have been used for this purpose.
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But how could the switchboard tell which buttons were pushed? The solution was that each button
would emit a different sound. So telephones could have been designed with 12 oscillators in the
phone, issuing a different tone for each button. To save on hardware, though, the choice was made
that each column would power the same oscillator, and each row would power a different oscillator.
The frequencies corresponding to each oscillator (in Hz) are shown in the image above. For example,
if the number 4 were pushed on the phone, the signal emitted would be

s(t) = Acos(2m 770t) + A cos(2m 1209 ),

where A € R is some unknown amplitude and ¢ is time in seconds. So phones were made with 7
oscillators rather than 12.

For legacy reasons, we still transmit those frequencies when we push buttons on our phones. If you
ever get to a menu where they say something like “Push 1 to schedule an appointment, push 2
to hear details about your account, push 0 to speak to an operator”, they are waiting to hear the
appropriate tones to understand which button you've pushed.

And thus we arrive at the problem. Download the following file of data.

www.stanford.edu/ "ndwork/teaching/1706ee102a/hmwk/data/DialNumber.mat

You can load this data into Matlab using the 1load command. The variable dialTone contains
the sampled signal where someone is entering a 10 digit sequence, and the variable Fs contains the
sampling rate. ldentify the sequence of buttons pushed.

Problem 5. Quadrature Amplitude Modulation

Suppose you want to send a band-limited complex signal; this is equivalent to sending two real
messages (s1 and sg) each with the same band-limit (corresponding to the real and imaginary parts
of the signal). This can be done with Quadrature Amplitude Modulation, depicted in the figure
below.
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The low-pass filter has a cutoff frequency equal to the band-limit of the two functions. (Assume an
ideal low-pass filter throughout this problem.)

a) Find an expression for y.

b) Show that you can recover s; and sy from y.

c) Suppose that the receiver isn't in phase with the transmitter (i.e. instead of multiplying by
exp(i2m f.t), the receiver multiplies by exp (i 27 f.(t — A)) for some unknown A. Can you still
recover s1 and s2? If not, does the difference matter?

Problem 6. Radar

RADAR is a system used to measure the distance to objects; it stands for RAdio Detection And
Ranging. A directional antenna is used to send an electromagnetic wave of a known form in a given
direction. This burst of electromagnetic energy is called the “pulse.” The radar then uses the same
antenna to listen to the electromagnetic spectrum in the vicinity. If there's an object in the direction
that the wave was emitted, the energy will reflect off of that object and come back at the antenna.
The data is processed to see if any portion of the waveform return looks similar to the emitted
waveform; if it looks similar enough, then a detection is registered at that distance. You will create
an algorithm to perform radar detection in this problem.

Download the data from the following link. The variable template is the waveform emitted by the
antenna. The variable sig is the signal received by the antenna after the initial emission; it is known
as the “radar return.” The data was sampled at 5 GHz.

www.stanford.edu/ "ndwork/teaching/1706eel102a/hmwk/data/radarReturn.mat

So how do we perform this detection? We need to search for the template in the radar return; our
problem is noise; there's a whole bunch of stuff there that isn’t our return, so we've got to find our
signal in the data.

One way to do this might be to hypothesize that the return is at index 1 in the radar return; with
this hypothesis, you perform a point-wise multiplication of the template (of length N) with the first
N elements of the radar return and add up all the values attained. Then you hypothesize that the
data is at the second index, and perform a similar operation. If ever there's a point where this value
is high, then you might think that the location indicated is the return of the emitted signal. But
what is this operation exactly? It's a cross-correlation! It can be expressed as

(txr)[n] = t[m]rin + m),

m=0
where t is the template, t is the conjugate of ¢, and r is the radar return.

And we're well on our way there. It looks like the cross-correlation will be instrumental in our process
of detection. There are two problems remaining: (1) if there's a spurrious high value in the return
(if there just happens to be a spot with a lot of noise) then our algorithm will assign a lot of weight
to that location even though it's just noise, and (2) we don't know what values correspond to a
good match. We would prefer an algorithm that doesn't get confused with high values of data, and
where the thresholds are on an absolute scale.

For that, we turn to the Pearson Correlation Coefficient (PCC). PCC is defined for two populations
x and y, each with N elements, as follows:
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where 1., p1,, are the mean values of z and y.




The PCC has a maximum value and a minimum value. And so the threshold we choose for a
detection is independent of the values in the return itself. And there lies our answer: rather than
computing the dot product of the template and the return at each index of the return (called cross-
correlation), compute the PCC at each index of the return (called Normalized Cross Correlation).
Set an appropriate threshold, and make detections.

a) What are the maximum and minimum values of the Pearson Correlation Coefficient. When does
it attain its maximum? When does it attain its minimum?

b) Use the FFT to implement a fast normalized cross correlation and detect the radar return. Use
subplot to plot the original signal as well as the result of the normalized cross correlation.

c) How far away was the object detected?

d) Explain this detection algorithm in your own words. Why does it work? Any ideas on how you
might improve the algorithm?

Note: searching for a template in a signal in this way is called “Matched Filtering.” The algorithm
shown is for the special case when the noise is white.



