
Clean Code
by Robert Martin

Presented by
Nicholas Dwork

5/8/15

What is Clean Code?
I like my code to be elegant and efficient. The logic
should be straightforward to make it hard for bugs to
hide, the dependencies minimal to ease maintenance,
error handling complete according to an articulated
strategy, and performance close to optimal so as not to
tempt people to make the code messy with
unprincipled optimizations. Clean code does one thing
well.

- Bjarne Stroustrup
 (Inventor of C++)

What is Clean Code?

You know you are working on clean code when each
routine you read turns out to be pretty much what you
expected. You can call it beautiful code when the code
also makes it look like the language was made for the
problem.

- Ward Cunningham
 (Inventor of Wiki)

What is a Code?

It’s what we do.

Cost of Dirty Code

Microsoft Word 1.0

Refactor as you Go

Leave the code cleaner than you found it.

“Technical Debt” (term used at Google):
- Deadlines, budgets, and experimentation lead to

dirty code.
- The code becomes increasingly unwieldy:

difficult to read and understand, hard to debug,
difficult to add features

- Pay off the technical debt: refactor the code,
make it easier to read and understand

Variable Names

d = 8; Not descriptive.
elapsedTime_days = 8; Very clear.

kx = 8; Good
kx_cyclesPerCm; Could be better

Make variable names nouns.
The name of the variable tells you why it exists.

Avoid Magic Numbers

Use variables rather than hard code numbers.

area = 0.5 * 3 * 4;

base = 3;
height = 4;
area = 0.5 * base * height;

Unclear what’s
happening.

Much more clear that
we’re calculating the
area of a triangle.

Functions

Make functions perform exactly one task.

Rule of thumb: 20-30 lines
Make functions short.

Function Names

Function names start with verbs.
The name of the function tells you what it does.

d = ld(name) variable names aren’t descriptive
not clear what ld does

data = loadData(filename)
The intent of the function is clearly
understood

Make Functions Accept few Arguments

The ideal number of arguments for a function is 0.
The next best is 1.

The fewer the number of arguments, the easier the
function is to understand and test.

Think about the combinatorics.

Argument names should be descriptive.
Same rules as variable names.

Have Functions Maintain a
Level of Detail

function playTone()
 toneData = loadTone(toneFile);
 toneData(1:100) = 0;

sendToneToSpeaker(toneData);
end

Highlighted line is weird. It’s at a much different level of
detail than the rest of the function.

function img = reconstructMriImage(pfile)

 kData = loadData(pfile);

griddedData = grid(kData);

img = reconMRI(griddedData);

end

By keeping the function short, and modularizing
appropriately, dependencies are made clear.

it’s clear that reconstruction requires only the gridded
data, and not the k-space data

Avoid Boolean Flags

Boolean flags are a sign that your code does
more than one thing.

Test Driven Development

Write the unit test before you write production code

Write just enough production code to pass the test

With TDD, code development is a cycle.
Test and production code are written together.
Tests are just one step beyond production code.

Unit Tests

Have a script that runs through all tests
Make test results clear:

FAILURE FAILURE FAILURE

Make unit tests independent
Don’t let tests depend on each other

Make unit tests fast

Make sure all unit tests pass before committing code

Test is ok
Doesn’t guarantee applyE or applyAdjointE work
Would be much better if it output Passed or Failure

function testE_adjointE
x = rand(10,1); y = rand(100,1);
innerProd1 = sum(applyE(x) .* y);
innerProd2 = sum(x .* applyAdjointE(y));
diff = abs(innerProd1 - innerProd2);
disp(‘Testing <Ex,y> = <x,E^Ty>:’);
disp([‘ Should be 0: ‘, num2str(diff)]);

end

Test code is just as important as production code.

Test everything you can.

Comments

• It is very easy for comments to be out-of-date,
misleading, or wrong since they are not enforced
by the compiler.

• Only use comments when absolutely necessary.

• Comments should be avoided; information should
be conveyed through descriptive names.

A Necessary Evil

Avoid Duplication

Copy and pasting is a cardinal sin

Duplication is a sign that the code isn’t modularized
properly.

Successive Refinement

Make code get better with age.

5 More Bugs

There are always 5 more bugs

The biggest hurdle to overcome in debugging is
denial that there is a bug.

-Brian Hargreaves

Conclusions

• Descriptive

• Small

• Does one thing

• Tested

