Signal Processing and Linear Systems1 Lecture 3: Systems

Nicholas Dwork www.stanford.edu/~ndwork

A system accepts a function and outputs a function

$$f(x) \longrightarrow S \longrightarrow g(y)$$

$$S\{f\} = g$$

$$S\{f(x)\}(y) = g(y)$$

Applications

Experiment Design

How many data points do we need to understand our system?

Which data points should we measure?

Channel Equalization

Can we undo distortions of our communications channel?

Robustification

How can we change our system (e.g. add more struts to our building) to make it more structurally sound in a cost effective way?

Examples

Differentiation

$$f(x) \longrightarrow \boxed{\frac{d}{dx}} \longrightarrow f'(x)$$
 $S\{f\} = f'$

Integration

$$f(x) \longrightarrow \int_{-\infty}^{x} \longrightarrow g(x)$$
 $S\{f\}(x) = \int_{-\infty}^{x} f(\gamma) d\gamma$

Examples

$$f \longrightarrow S \longrightarrow g$$

$$g(x) = S\{f\}(x)$$

= $4f(x-3) + (f'(x))^2 + \cos(2\pi x)e^{i8} + 3$

Systems Can Have Multiple Inputs

<u>Sum</u>

$$f_1 \longrightarrow f_2 \longrightarrow g$$

$$g = f_1 + f_2$$

Difference

$$f_1 \longrightarrow f_2 \longrightarrow f_2$$

$$g = f_1 - f_2$$

Multiplication

$$f_1 \longrightarrow f_2 \longrightarrow g$$

$$g = f_1 f_2$$

Identity System

The identity system, denoted I, is the system where

$$I\{f\} = f$$

for all functions f .

Invertible

A system S is invertible means there exists a system S^{-1} such that $S\,S^{-1}=I$ for all functions.

Invertible systems (or systems that are *almost* invertible) are required for communications.

Linear Systems

A system S is linear means it satisfies both of the following

$$S\{f_1 + f_2\} = Sf_1 + Sf_2$$

$$S\{af\} = aS\{f\}$$

where f is a function and a is a scalar.

Extended Linearity

For a linear system S

$$S\left\{\sum_{n=-\infty}^{\infty} a_n x_n\right\} = \sum_{n=-\infty}^{\infty} S\left\{a_n x_n\right\} = \sum_{n=-\infty}^{\infty} a_n S\left\{x_n\right\}$$

$$S\left\{ \int_{-\infty}^{\infty} a(\gamma) x_{\gamma}(\tau) d\gamma \right\} = \int_{-\infty}^{\infty} S\left\{ a(\gamma) x_{\gamma}(\tau) \right\} d\gamma$$
$$= \int_{-\infty}^{\infty} a(\gamma) S\left\{ x_{\gamma}(\tau) \right\} d\gamma$$

Trivial Input

For a linear system S

$$S\{0\} = 0$$

Proof:
$$S\{0\} = S\{0 f\} = 0 S\{f\} = 0$$
 .

Proving a System is Linear

Ex:
$$S\{f\}(x) = 18 f(x-3) + 21 f(x+1)$$

Proof: We must show that $\,S\,$ satisfies $\,S\{\alpha\,f\}=\alpha\,S\{f\}\,$ and $\,S\{f+g\}=S\{f\}+S\{g\}\,$ for all functions $\,f\,$ and $\,g\,$ and scalars $\,\alpha\,$.

It suffices to show
$$S\{\alpha\,f+\beta\,g\} = \alpha\,S\{f\} + \beta\,S\{g\}.$$

$$S\{\alpha\,f+\beta\,g\}(x) = 18\,[\alpha\,f(x-3)+\beta\,g(x-3)] \\ + 21\,[\alpha\,f(x+1)+\beta\,g(x+1)] \\ = \alpha\,[18\,f(x-3)+21\,f(x+1)] + \beta\,[18\,g(x-3)+21\,g(x+1)] \\ = \alpha\,S\{f\}(x)+\beta\,S\{g\}(x).$$

Shift Invariant

A system is shift invariant means that if you shift the input then the output shifts the same amount.

Shift Invariant

A system is shift invariant means that if you shift the input then the output shifts the same amount.

$$g(y) = S\{f(x)\}(y)$$

$$\Rightarrow g(y - \Delta) = S\{f(x - \Delta)\}(y)$$

Vector Shift Operator

We can't shift a vector over like we can with a function. So we *wrap* around.

$$\tau_{p} \left\{ \begin{bmatrix} v_{1} \\ v_{2} \\ v_{3} \\ \vdots \\ v_{M} \end{bmatrix} \right\} = \begin{bmatrix} v_{M-p-1} \\ \vdots \\ v_{M} \\ v_{1} \\ \vdots \\ v_{M-p} \end{bmatrix}$$

Vector Shift Operator

Examples:

$$\tau_{1} \left\{ \begin{bmatrix} v_{1} \\ v_{2} \\ v_{3} \\ v_{4} \\ v_{5} \end{bmatrix} \right\} = \left\{ \begin{bmatrix} v_{5} \\ v_{1} \\ v_{2} \\ v_{3} \\ v_{4} \end{bmatrix} \right\} \qquad \tau_{3} \left\{ \begin{bmatrix} v_{1} \\ v_{2} \\ v_{3} \\ v_{4} \\ v_{5} \end{bmatrix} \right\} = \left\{ \begin{bmatrix} v_{3} \\ v_{4} \\ v_{5} \\ v_{1} \\ v_{2} \end{bmatrix} \right\}$$

Circularly Shift Invariant

Consider a system $S:\mathbb{C}^M \to \mathbb{C}^N$.

S is shift invariant means that if we circularly shift the input then we circularly shift the output.

$$S\left\{\tau_{p}\left\{v\right\}\right\} = \tau_{p}\left\{S\left\{v\right\}\right\}$$

Stable

A system is Bounded Input Bounded Output stable means if

$$\sup f < \infty$$
 then $\sup S\{f\} < \infty$.

(If you don't know what the supremum is, just pretend it says maximum.)

Ex: consider an airplane system where the input is a gust of wind and the output is the altitude of the airplane.

We REALLY want this system to be stable!

Causal

A system is causal means it doesn't depend on future input values.

Note: it can depend on past input values.

Memory

A system has memory means the output at a given time is a function of past inputs.

A system that is not a function of a past inputs is said to be memoryless.

The output of a causal memoryless system is only a function of present time values.

Exs: Input: air conditioner strength, Output: room temperature

Input: gun orientation, Output: velocity of bullet

Input: plane aileron position, Output: plane attitude (no wind)