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Lecture 4:  Characterizing Systems
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Our goal will be to develop a way to learn how the system behaves.

In general, this is a very difficult thing to do.

We will see that if our system has some of the nice properties we’ve 
already discussed, then this becomes remarkably easy.
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S

Consider a system that accepts a vector and outputs a vector.

f g

We want to learn how this system behaves.  How can we do that?

In general, we have to check every vector that we’re interested in.  
That can take a long (perhaps infinite) amount of time.

Discrete Systems
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Any vector                can be written as

Suppose we know that our system is linear.  That helps a lot!

Consider the example where S : C3 ! C3
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What is the output when our system is applied to this vector?
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Now we don’t need to know the output of every vector.  We only need 
to know the output from three vectors!!!
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In general, for a linear system S : CM ! CN

This is called the superposition summation.

This shows that we only need to know the outputs for        vectors in 
order to know the output for any vector.

M

S{v} =
MX

i=1

vi S{ei}
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What if the system S is also shift invariant?
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In general S{ei} = S{⌧i{e1}} = ⌧i{S{e1}}

These are called Linear Shift Invariant (LSI) systems.
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S{ei} = S{⌧i{e1}} = ⌧i{S{e1}}

Recall the superposition summation

Let’s combine these two:

We only need to know the output for 1 vector to determine the output 
of any vector!!!

S{v} =
MX

i=1

vi S{ei}

S{v} =
MX

i=1

vi ⌧i {S{e1}}
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e1

S{e1}

is so important that we give it a special name and symbol.

� = e1 is called the Kronecker impulse (or delta) function.

is so important that we give it a special name and symbol.

h = S{e1} is called the impulse response.

S{v} =
NX

i=1

vi ⌧i{h}With these symbols,

S{v} =
MX

i=1

vi ⌧i {S{e1}}
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Suppose                      .  Then the circular convolution of f and g is

Circular Convolution

f ~ g =
NX

i=1

fi ⌧i{g}

f, g 2 CN

(f ~ g)[n] =
NX

m=1

f [m] g [(n�m)
modN ]
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This shows that for an LSI system

Major Theorem:

For an discrete LSI system, the output is equal to the input circularly convolved
with the impulse response.

S{v} =
NX

i=1

vi ⌧i{h} = v ~ h.
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S

Consider a system that accepts a function and outputs a function.

f g

We want to learn how this system behaves.  How can we do that?

In general, we have to check every function that we’re interested in.  
That can take a long (perhaps infinite) amount of time.

Continuous Systems
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Suppose we know that our system is linear.  That helps a lot!

But first, we need a new tool.

With discrete systems we had a vector     such that�

� · x =
NX

i=1

�i xi = x1

With continuous systems, we need an analogous function
Z 1

�1
�(s)x(s)ds = x(0)
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Impulse Function

Z 1

�1
�(s)x(s)ds = x(0)

The Dirac Delta Function     is the function that satisfies the following:�

Basic idea:      acts over a time interval which is very small.  During this 
small time interval,                     .

�
x(s) ⇡ x(0)

16



Approximate          as                              .

Impulse Function Intuition
�(s) gn(s) = n⇧(ns)

0 1-1

g1(s)
g2(s)

gn(s)

The area of       is                    .gn n (1/n) = 1

0 1-1

gn(s)
x(s)

x(0)

Z 1

�1
x(s) �(s) ds = lim

n!1

Z 1

�1
x(s) gn(s) ds = x(0)

Z 1

�1
gn(s) ds = x(0)
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Scaled Impulses
↵ � is an impulse at time 0 with magnitude or strength or area      .↵

Z 1

�1
↵ �(s)x(s)ds = ↵x(0)

On plots, draw an arrow and write the strength next to the arrow.

Ex: 2�

0

2
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Scaling the Argument of Impulses

Again, this can be proved with variable substitution.

�(as) =
1

|a| �(s)
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Sifting Property
When the impulse function is shifted, we get a shifted value of     .Z 1

�1
x(s) �(s��) ds = x(�)

x

This can be proved by a variable substitution.

0

x(s)

�

x(�)

gn(s��)
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Now that we have the impulse function, how can we characterize a 
continuous linear system?

Before, we noted that any vector                could be written asv 2 C3
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We need to write a function x similarly.  It turns out, now we can!

x(�) =

Z 1

�1
x(s)�(� � s) ds
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h�where        is the response of the system applied to an impulse at location.

This is called the Superposition integral.

S {x(�)} = S

⇢Z 1

�1
x(s)�(� � s) ds

�

=

Z 1

�1
S {x(s)�(� � s)} ds

=

Z 1

�1
x(s)S {�(� � s)} ds

=

Z 1

�1
x(s)h�(s) ds
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What if the system is also shift invariant?

where     is the response of the system to an impulse function (the impulse 
response).

h

To determine the output of an LSI system to any function, we only need to 
know how the system responds to one function - an impulse!!!

S{x(�)} =

Z 1

�1
x(s)S {�(� � s)} ds

=

Z 1

�1
x(s)h(� � s) ds
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The convolution of f and g is

Convolution

With this notation,

S{x} = x ⇤ h
Major theorem:

For a continuous LSI system, the output is equal to the input convolved 
with the impulse response.

(f ⇤ g)(�) =
Z 1

�1
f(s) g(� � s) ds
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Graphical Interpretation

(f ⇤ g)(�) =
Z 1

�1
f(s) g(� � s) ds

f

g

Let’s consider a specific    .

f

s

�

g(�s)

s
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Graphical Interpretation

(f ⇤ g)(�) =
Z 1

�1
f(s) g(� � s) ds

f

Let’s consider a specific    .

f

s

�

s

g(� � s)

�

g(�s)

s
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Graphical Interpretation

(f ⇤ g)(�) =
Z 1

�1
f(s) g(� � s) ds Let’s consider a specific    .

f

s

�

s

g(� � s)

�

x
s

f(s) g(� � s)

And then we integrate to get 
the area under the curve.

That gives us the value of

(f ⇤ g)(�)
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“Flip and Slide”
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Examples of System Responses
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Twisted Pair Cable

The output is delayed and smoothed.

31

Transmitting 0.5 bits / sec. We can easily see the 1s and 0s in the output.

Transmitting 4 bits / sec. The signal appears lost.
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Multi-path Echoes

33

High Energy Photon Detectors
Can be modeled as having a simple exponential decay impulse response.

They are used in Positron Emission Tomography (PET) and Nuclear 
Scintigraphy medical imaging modalities.
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Input: a series of photons (modeled as impulses)

Output:  recorded light is a superposition of impulse responses.
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Try these:
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Properties of Convolution
Associative

Commutative

Distributive

f ⇤ (g ⇤ h) = (f ⇤ g) ⇤ h

f ⇤ g = g ⇤ f

f ⇤ (g + h) = (f ⇤ g) + (f ⇤ h)

Identity f ⇤ � = f
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Multiple Systems
What if we had multiple systems?

S1 S2 Snx

y

Even if we knew the impulse responses, to estimate the output for a given 
input, we would have to perform n convolutions!!!

That would be hard and boring.

There’s a better way…
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