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Our goal will be to develop a way to learn how the system behaves.

In general, this is a very difficult thing to do.

We will see that if our system has some of the nice properties we've
already discussed, then this becomes remarkably easy.
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Discrete Systems

Consider a system that accepts a vector and outputs a vector.

We want to learn how this system behaves. How can we do that?

In general, we have to check every vector that we’re interested in.
That can take a long (perhaps infinite) amount of time.




Suppose we know that our system is linear. That helps a lot!

Consider the example where S : C3 — C3

Any vector v € C3 can be written as

1 0 0
U1 0 -+ (%) 1 —+ V3 0
0] 10 1]

What is the output when our system is applied to this vector?
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Now we don’t need to know the output of every vector. We only need
to know the output from three vectors!!!




In general, for a linear system S : CM — CV

S{v} = Z v; S{e;}

This is called the superposition summation.

This shows that we only need to know the outputs for M/ vectors in
order to know the output for any vector.

What if the system S is also shift invariant?

These are called Linear Shift Invariant (LSI) systems.

('O'\ ( f_l-\\ ( f'l'\\
1 0 0
SO =58 |V =nls |03}

In general S{ei} = S{Ti{el}} = Tz’{S{el}}




S{ei} = S{r{ei}} = ni{S{ei}}
M

Recall the superposition summation S{’U} = Z V; S{ei}
1=1

Let’s combine these two:

S{v} = Z v; ; {S{e1}}

We only need to know the output for 1 vector to determine the output
of any vector!!!

S{v} = Zv 7 {S{e1}}

€1 is so important that we give it a special name and symbol.

= €1 is called the Kronecker impulse (or delta) function.
S{e1} is so important that we give it a special name and symbol.
h = 5{61} is called the impulse response.

N
With these symbols, S{v} = Z v; Ti{h}

1=1
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Circular Convolution

Suppose f, g € C" . Then the circular convolution of fand g is

f®9—2fz7'z{9}

(f ®g)n Zf gl(n —m)mod N|

=1
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This shows that for an LS| system

N

S{v} =) vini{h} =v®h.

1=1

Major Theorem:

For an discrete LSI system, the output is equal to the input circularly convolved

with the impulse response.
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Continuous Systems

Consider a system that accepts a function and outputs a function.

We want to learn how this system behaves. How can we do that?

In general, we have to check every function that we’re interested in.
That can take a long (perhaps infinite) amount of time.
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Suppose we know that our system is linear. That helps a lot!

But first, we need a new tool.

With discrete systems we had a vector ¢ such that

N
1=1

With continuous systems, we need an analogous function

/_ " 5(s) a(s)ds = x(0)

15

Impulse Function

The Dirac Delta Function ¢ is the function that satisfies the following:

/OO d(s) xz(s)ds = x(0)

— o0

Basic idea: ¢ acts over a time interval which is very small. During this
small time interval, z(s) ~ z(0) .
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Impulse Function Intuition

Approximate §(s) as gn(s) = nIl(ns). The areaof g, is n(1/n)=1.

- x(S) i(Q/
(o) #(0) T
lgl(S)
1 (I) 1 -1 (I) 1
/ z(s)d(s)ds = li_>m z(s) gn(s)ds = x(O)/ gn(s)ds = z(0)
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Scaled Impulses

a Jis an impulse at time 0 with magnitude or strength or area Cx.

/OO ad(s)x(s)ds = ax(0)

— o0
On plots, draw an arrow and write the strength next to the arrow.

Ex: 20 [ 2

I
0
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Scaling the Argument of Impulses

5(as) = — 5(s)

al

Again, this can be proved with variable substitution.

19

Sifting Property
When the impulse function is shifted, we get a shifted value of .
o
/ z(s)d(s — A)ds = x(A)
— 00
This can be proved by a variable substitution.

1 gn(s — A)
z(s)

S~
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Now that we have the impulse function, how can we characterize a
continuous linear system?

Before, we noted that any vector v & (C3 could be written as

1 0 0
U1 0O + V9 1] + VU3 0
0] 0] 1]
We need to write a function x similarly. It turns out, now we can!
o0
z(y) = [ w(s)o(y —s)ds
— 00
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where h,y is the response of the system applied to an impulse at location.

This is called the Superposition integral.
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What if the system is also shift invariant?

stat} = | " 2(s) S {0y - 8)} ds

- [ atnty—s)as

where h is the response of the system to an impulse function (the impulse
response).

To determine the output of an LSI system to any function, we only need to
know how the system responds to one function - an impulse!!!

23

Convolution

The convolution of fand gis

o= [ " f(s) gty — 5) ds

S{x} =xxh

Major theorem:

For a continuous LSI system, the output is equal to the input convolved
with the impulse response.

24




Graphical Interpretation
(f*xg)(y) = / f(s)g(y—s)ds  Let’s consider a specific 7.
fy

fy
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Graphical Interpretation
(f+g9)(v) = / f(s)g(y—s)ds Let’s consider a specific 7).
fy

fy
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Graphical Interpretation

(f*g)( / f(s — s)ds  Let’s consider a specific .

I F(s) gy — 9
\@/: 7 |
g(y — s) And then we integrate to get
the area under the curve.
/\ S That gives us the value of
< } >
N (f *9)(v)
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Examples of System Responses
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Twisted Pair Cable
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Transmitting 0.5 bits / sec. = We can easily see the 1s and Os in the output.
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Transmitting 4 bits / sec.

The signal appears lost.
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Multi-path Echoes

Transmitter Receiver

Direct Path
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High Energy Photon Detectors

Can be modeled as having a simple exponential decay impulse response.

—— Photomultiplier

Scintillating
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. \Photon
bl From: Doshi et al, Med Phys. 27(7), p1535 July 2000

They are used in Positron Emission Tomography (PET) and Nuclear
Scintigraphy medical imaging modalities.
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Input: a series of photons (modeled as impulses)

Output: recorded light is a superposition of impulse responses.

Input: Photons

I
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Output: Light
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Try these:
A w(t) A h(t) (-7; * h) (t)
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Properties of Convolution
associative  f ok (g h) = (f % g) *h
Commutatve  f kg = g * f
istibutve —— f s (g + ) = (f *g) + (f = D)

|dentity f X (5 — f
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Multiple Systems

What if we had multiple systems?

Qj—»Sl :SQ—----—>Sn—>y

Even if we knew the impulse responses, to estimate the output for a given
input, we would have to perform n convolutions!!!

That would be hard and boring.

There’s a better way...
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