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Lecture 5:  Fourier Series and Fourier Transform
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Now we know that we can write any function as a linear combination of impulse 
functions.

But impulses are difficult to work with.  What is the response, for example, to a 
system that squares the input?

The above formulation let us determine interesting properties of LSI systems, 
but it doesn’t really help us determine the impulse response of a system.

Wouldn’t it be nice if we could write      as a linear combination of extremely 
nice functions?

x

f(x) =

Z 1

�1
f(s) �(x� s) ds
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The nicest functions we have are sines and cosines.

For a moment, let’s pretend that we can write a function as a linear combination 
of sines and cosines.

Let’s consider a function 

We can evaluate them anywhere, they’re periodic, and we can 
differentiate and integrate them as many times as we want.

If it’s true that we can write     this way, then what are the values of       ?f Fn

f : [0, P ] ! C.

f(x) =

1X

n=�1
Fn exp

⇣
i 2⇡

nx

P

⌘
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The trick: compute the following expression

= Fm !!!

Now we can find all the      values.F
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Fn exp

⇣
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P

⌘
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P

⌘
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P
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P
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Fourier Series
Forward Transform (Analysis Equations):

Inverse Transform (Synthesis Equations):

f(x) =

1X

n=�1
Fn exp

⇣
i 2⇡

nx

P

⌘

Fn =

1

P

Z P

0
f(x) exp

⇣
�i 2⇡

nx

P

⌘
dx
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Periodic Extension
The periodic extension of a function                               is the functionf : [0, P ] ! C

fp.e. : R ! C such that                                for all                       and
fp.e.(x) = f(x) x 2 [0, P )

fp.e. is periodic with period    .P
f

fp.e.
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If we have    , we can get          .  If we have          , then we can get     .fp.e.f fp.e. f

More than that, adding two functions defined on [0,P) and determining the 
periodic extension is the same as computing the periodic extensions and adding.

The same is true of scalar multiplication.

Technically, we say that functions defined on [0,P) and periodic extensions of 
those functions are isomorphic to each other.

You don’t need to know this word; it just means that we don’t add or lose 
information by using the original function or the periodic extensions.

For any periodic function, we can compute the Fourier Series of any 
period.  And then we can get back the original function!
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Now we know that if we can represent a function as a sum of sines and 
cosines, then we can find the linear coefficients.

But how often can a periodic function be represented this way?

ALMOST ALWAYS!!!

Sufficient condition:  any power function can be represented as a Fourier 
Series.

Necessary and sufficient condition:  Dirichlet conditions (see Signal 
Analysis) by Papoulis for details.
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f(x) =

1X

n=�1
Fn exp

⇣
i 2⇡

nx

P

⌘

If     is real and even thenf
f(x) =

1X

n=�1
Fn cos

⇣
2⇡

nx

P

⌘
.

We are approximating a function as a sum of cosines with increasing frequency.

9

10



What frequencies are we using?

P = 1

k =
n

P
Let             .  Then     is the frequency in Hertz.k

0 1

P = 2

P = 4

P = 1

f(x) =

1X

n=�1
Fn exp

⇣
�i 2⇡

nx

P

⌘
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Recall the synthesis equation of the Fourier Series:

f(x) =

1X

n=�1
Fn exp

⇣
i 2⇡

nx

P

⌘

f(x) =

Z 1

�1
F (k) exp(i 2⇡ kx)dk

The analogous equation for a function define on all real numbers is

This is the synthesis equation for the Fourier Transform.
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Fourier Transform
Forward Transform (Analysis Equations):

Inverse Transform (Synthesis Equations):

F (k) = F{f}(k) =
Z 1

�1
f(x) exp (�i 2⇡ kx) dx

f(x) = F�1{F}(x) =
Z 1

�1
F (k) exp (i 2⇡ kx) dk

is called the spectrum of     .fF
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Power Spectral Density (PSD)

PSD{f}(k) = |F (k)|2 = F (k)F (k)
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Bandwidth
The bandwidth of a function      is the smallest value        such thatf B

F (k) = 0 for all |k| > B.

B

|F |
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System Response
Now we know that we can represent functions as linear combinations of 
sines and cosines.

We will now see how to use this fact to determine a linear system’s 
response.

But first we need one more very important tool: The Convolution Theorem.
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Shift Theorem

Proof:

u = x��Let                      .F {f(x��)} (k) =
Z 1

�1
f(x��)e�i2⇡kx

dx.

F {f(x��)} (k) =
Z 1

�1
f(u)e�i2⇡k(u+�)

dx

= e

�i2⇡k�

Z 1

�1
f(u)e�i2⇡ku

dx.

F{f(x��)}(k) = e

�i 2⇡ k�F{f}(k)
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Convolution Theorem
F {f ⇤ g} = F{f}F{g}

Proof:

F {f ⇤ g} =

Z 1

�1
(f ⇤ g)(x) e�i2⇡kx

dx

=

Z 1

�1

✓Z 1

�1
f(�)g(x� �)d�

◆
e

�i2⇡kx
dx

=

Z 1

�1
f(�)

✓Z 1

�1
g(x� �)e�i2⇡kx

dx

◆
d� =

Z 1

�1
f(�)

�
e�i2⇡k�

�
G(k)d�

= G(k)

Z 1

�1
f(�)

�
e�i2⇡k�

�
d� = F (k)G(k)

The Fourier Transform Converts Convolution into Multiplication!!!
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y(�) = S{f}(�) = (f ⇤ h)(�)Recall that for a LSI system,                                                                   .

By the convolution theorem, Y (k) = F (k)H(k).

Now we can find the impulse response of the system!

H(k) = Y (k)/F (k) h = F�1{H}

Send in a signal with the frequencies you’re interested in, and use the 
outputs to find      .H

is called the Transfer function.H is called the Modulation Transfer function.|H|
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Channel Equalization (Deconvolution)
Suppose we are transmitting a signal through a medium.  The medium distorts
the signal, and we would like to undo that distortion.

f g

Send a known signal with the spectrum you’re 
interested in.  Record the output.

H = G/FCompute                     .

For the next signal,
     1)  Compute the Fourier Transform
     2)  Divide by H
     3)  Inverse Fourier Transform!

G ⇡ FH

f̂ = F�1{F̂} ⇡ f
F̂ = G/H ⇡ F
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What we’ve developed is so powerful that we’ll now spend a great deal of time 
learning about the Fourier Transform.

21


