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Lecture 6:  Properties of the Fourier Transform
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Fourier Transform
Forward Transform (Analysis Equations):

Inverse Transform (Synthesis Equations):

F (k) = F{f}(k) =
Z 1

�1
f(x) exp (�i 2⇡ kx) dx

f(x) = F�1{F}(x) =
Z 1

�1
F (k) exp (i 2⇡ kx) dk
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Dirac Delta Function

Proof:

F{�} = 1

F{�} =

Z 1

�1
�(x)e�i 2⇡ kx

dx

= e�i 2⇡ k 0 = 1
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Rect Function

⇧(x) =

8
<

:

1 |x| < 1/2
1/2 |x| = 1/2
0 |x| > 1/2

1/2�1/2

⇧

F {⇧} (k) =
Z 1

�1
⇧(x)e�i 2⇡ kx

dx

=

Z 1/2

�1/2
e

�i 2⇡ kx

dx

=

Z 1/2

�1/2
cos(2⇡ kx)� i sin(2⇡ kx)dx =

Z 1/2

�1/2
cos(2⇡ kx)dx

=
sin(2⇡ kx)

2⇡ k

����
1/2

�1/2
=

sin(⇡ k)

⇡ k
= sinc(k)

4



Gaussian Function

Proof:

F{f}(k) = e�⇡ k2

f(x) = e

�⇡ x

2

The Fourier Transform of a Gaussian is itself.

F(k) = f̂(k) =

Z 1

�1
e

�⇡x

2

e

�i2⇡kx
dx

Now differentiate both sides 
with respect to k.

Integrate by parts where                              , and                                        .
u(x) = e

�i2⇡kx
v

0(x) = e

�⇡x

2

(�2⇡x)

f̂

0(k) =

Z 1

�1
e

�⇡x

2

(�2⇡x)e�i2⇡kx
dx

f̂

0(k) = �2⇡k

Z 1

�1
e

�⇡x

2

e

�i2⇡kx
dx = (�2⇡k)f̂(k)
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f̂

0(k) = �2⇡k

Z 1

�1
e

�⇡x

t

e

�i2⇡kx
dx = (�2⇡k)f̂(k)

This is a separable ordinary differential equation.

f̂ 0(k)

f̂(k)
= �2⇡k ) f̂(k) = ce�⇡k2

where c is a constant.

From homework, we saw                               .
Z 1

�1
e

�⇡x

2

dx = 1

) f̂(0) =

Z 1

�1
e

�⇡x

2

e

�i2⇡0x
dx =

Z 1

�1
e

�⇡x

2

dx = 1 ) c = 1.

) log

⇣
ˆf(k)

⌘
= �⇡ k2 + c̃
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Symmetry Properties of Fourier Transform

If     is real and even then      is real and even.

If     is real and odd then      is imaginary and odd.

f

f F

F

If     is real then      is Hermitian (its real part is even and its imaginary part 
is odd).
f F

Note:  you will prove these in homework.
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Derivative Theorem

Proof:

F {f 0(x)} (k) = i2⇡kF{f}(k)

f

0(x) =
d

dx

f(x) =
d

dx

F�1{F}(x)=
d

dx

Z 1

�1
F (k)ei 2⇡ kx

dk

=

Z 1

�1
F (k)

d

dx

e

i 2⇡ kx

dk

=

Z 1

�1
F (k)(i2⇡k)ei 2⇡ kxdk

) F{f 0} = F
�
F�1{(i2⇡k)F (k)}

 
= (i2⇡k)F (k).
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Integral Theorem

Proof:

Left for EE 261.

F
⇢Z

x

�1
f(⌧)d⌧

�
(k) =

F{f}(k)
i2⇡k

+
1

2
F{f}(0) �(k)
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Step Function

Proof:

u(t) =

Z t

�1
�(x)dx

Applying the integral property completes the proof.

F{u}(k) = 1

2

✓
�(k) +

1

i⇡k

◆
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Shift Theorem

Proof:

u = x��Let                      .F {f(x��)} (k) =
Z 1

�1
f(x��)e�i2⇡kx

dx.

F {f(x��)} (k) =
Z 1

�1
f(u)e�i2⇡k(u+�)

dx

= e

�i2⇡k�

Z 1

�1
f(u)e�i2⇡ku

dx.

F{f(x��)} = e

�i2⇡k�F{f}(k)
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Shifted Delta Function

F{�(x� x0)}(k) = e

�i 2⇡ kx0

Proof:

Recall that                       .F{�} = 1

Apply the Shift Theorem.
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Duality
F {F {f}} = f�

Proof:

F{f}(k) =
Z 1

�1
f(x) e�i 2⇡ kx

dx

F�1
�
f� (k) =

Z 1

�1
f(�s) ei 2⇡ sk ds =

Z 1

�1
f(u) e�i 2⇡ uk du

It suffices to show                                              .F{f} = F�1
�
f� 
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Applications of Duality
We’ve shown

F{⇧} = sincF{�} = 1 F{�(x� x0)} = e

�i2⇡kx0

By duality,

F{1} = � F{sinc} = ⇧ F{ei2⇡kx0} = �(x� x0)
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Cosine and Sine

=

Z 1

�1

e

i2⇡x + e

�i2⇡x

2
e

�i 2⇡ kx

dx

=
1

2

Z 1

�1
e

�i2⇡(k+1)x
dx+

1

2

Z 1

�1
e

�i2⇡(k�1)x
dx =

1

2
[�(k � 1) + �(k + 1)]

F{cos(2⇡x)}(k) =
Z 1

�1
cos(2⇡x)e

�i 2⇡ kx

dx

Proof:

F{sin(2⇡x)}(k) = i

2
[�(k + 1)� �(k � 1)]

F{cos(2⇡x)}(k) = 1

2

[�(k + 1) + �(k � 1)]
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Linearity of the Fourier Transform

1/2�1/2

⇧

The Fourier Transform accepts a function as input and outputs a function.  
It’s a system!
The Fourier Transform is linear.

+

2⇧(2x)

�1/4 1/4

=
1/2�1/2

f

= sinc(k) + sinc(k/2).

F{f}(k) = F {⇧(x) + 2⇧(2x)} (k)

= F {⇧(x)} (k) + F {2⇧(2x)} (k)
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Comb or Shah Function

X(x) =
1X

n=�1
�(x� n)

0

F{X} = X
Proof:

X is a periodic function with period 1.  Therefore, it can be 
represented by a Fourier series.

X(x) =

1X

n=�1
cn exp (i 2⇡ nx) .

cn =

Z 1/2

�1/2
X(x) exp (�i 2⇡ nx) dx = 1.
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) X(x) =

1X

n=�1
exp (i 2⇡ nx) .

Taking the Fourier Transform of both sides:

F{X} = F
( 1X

n=�1
exp (i 2⇡ nx)

)

=

1X

n=�1
F {exp (i 2⇡ nx)}

=
1X

n=�1
�(k � n) = X.
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Scaling Theorem

F {f(↵x)} (k) =
Z 1

�1
f(↵x)e�i 2⇡ kx

dx

Proof:
Case 1:  ↵ > 0

=
1

↵

Z 1

�1
f(u)e�i 2⇡ ku

↵ du

=
1

↵
F
⇢
f

✓
k

↵

◆�
(k)

When we consider the case where             , we complete the proof.↵ < 0

F {f(↵x)} =
1

|↵|F {f}
✓
k

↵

◆
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The function can be thin before or after the Fourier Transform, but not both.
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Heisenberg Uncertainty Principal
The dispersion of a function    about a point      isf a

�af =

R1
�1(x� a)2|f(x)|2 dx

R1
�1 |f(x)|2 dx

.

It is a measure of much     is concentrated near a.f

The HUP states that                                 for all        .�af �bF � 1

4
a, b

The point:  either     or               are spread out.f F{f}
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Complex Conjugation Theorem

Proof:

F
�
f̄
 
= F{f�}

F
�
f̄

 
(k) =

Z 1

�1
f̄(x) e�i 2⇡ kx

dx =

Z 1

�1
f(x) ei 2⇡ kx

dx

=

Z 1

�1
f(�s) e�i 2⇡ ks ds = F {f�}(k)
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Parseval’s (Rayleigh’s) Theorem

Recall: the energy of a function f is

Ef =

Z 1

�1
|f(x)|2dx =

Z 1

�1
f(x)f(x)dx

=

Z 1

�1
f(x)

Z 1

�1
F (k)ei2⇡kxdk dx =

Z 1

�1
F (k)

Z 1

�1
f(x)e�i2⇡kx

dx dk

=

Z 1

�1
F (k)F (k) dk =

Z 1

�1
|F (k)|2 dk.

Ef = EF

Proof:

=

Z 1

�1
f(x)F�1 {F (k)} dx
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Convolution Theorem
F {f ⇤ g} = F{f}F{g}

Proof:

F {f ⇤ g} =

Z 1

�1
(f ⇤ g)(x) e�i2⇡kx

dx

=

Z 1

�1

✓Z 1

�1
f(�)g(x� �)d�

◆
e

�i2⇡kx
dx

=

Z 1

�1
f(�)

✓Z 1

�1
g(x� �)e�i2⇡kx

dx

◆
d� =

Z 1

�1
f(�)

�
e�i2⇡k�

�
G(k)d�

= G(k)

Z 1

�1
f(�)

�
e�i2⇡k�

�
d� = F (k)G(k)

The Fourier Transform Converts Convolution into Multiplication!!!
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Tri Function
⇤(x) =

⇢
1 if |x|  1/2

0 otherwise

F{⇤} = sinc2

Proof:

By applying the convolution theorem, we complete the proof.

⇤ = ⇧ ⇤⇧
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Generalized Parseval’s Theorem

Left for homework.
Proof:

Z 1

�1
f(x) g(x) dx =

Z 1

�1
F (k)G(k) dk
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Where Are We?
We’ve seen that a LSI system can be completely characterized by its
impulse response.

The output is equal to the input convolved with the system’s 
impulse response.

We’ve seen that we can convert the difficult convolution operation into
multiplication, which is very easy, with the Fourier Transform.

We now have a pile of theorems to analyze our Systems with in the
Fourier domain.
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