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Lecture 8:  Sampling and The Discrete Fourier Transform
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So far we have used the Fourier Transform to analyze systems.

Our results have been analytical (we’ve had to the do the work by hand).

We are now going to figure out how to have a computer do much of the work
for us.

We will see that the computer will be able to approximate the Fourier 
Transform, and that we can characterize the errors due to the approximation 
well.
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Sensors gather data from physical systems

Piezoelectric resistors change resistance based on pressure.

Thermistors change resistance based on temperature.

Antennas convert the presence of electromagnetic waves into voltage.

Photodiodes convert visible light into electrical current.

Many many more.

How do we get the data from a sensor into a computer?

A microphone converts sound waves into voltage.
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Analog to Digital Converters
The sensors we’ve discussed output a continuous signal.

Sensor Computer

A/D

The A/D converts a continuous function into a series of numbers that are
then stored in computer memory.
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Sampling

The set of values of     are called samples:

     is the spacing between samples.�fn = f(n�)

f {f(n�) : n 2 Z}

An ideal A/D converter evaluates the input function at specific times.
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Suppose we are given samples of a function.  Can we reconstruct the 
function perfectly?

You would guess that we couldn’t; we’re throwing away so much 
information, aren’t we?

But it turns out that (in a somewhat special case), we can!
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Consider the set of samples 

We know the values of the function and the times that the samples were 
collected.

We are going to do something weird.  (This will turn out to be an incredibly 
ingenious idea!)

Construct an impulse train with the weights of the function.

f = (. . . , f(�2�), f(��), f(0), f(�), f(2�), . . .).

fs(x) =
1X

n=�1
f(x) �(x� n�)

�
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fs(x) =
1X

n=�1
f(x) �(x� n�)

What is the spectrum of     ?fs fs = X� f where X�(x) =
1X

n=�1
�(x� n�).

F{fs} = F{X� f} = F{X�} ⇤ F{f} =
1

�
X1/� ⇤ F{f}.

Suppose the bandwidth of      is B.f

F{fs} =

1/� B

|F{f}|

⇤1/�
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F{fs} =

1/�

⇤1/�

B

|F{f}|

=

Do the spectra overlap?

If                        , then they don’t.1/� > 2B
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How do we get back our original signal?
We need to multiply the spectrum by the following square wave:

The result is

which is the spectrum of our original function!

�
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=
F{f}

) f = F�1 {F{fsX�}�⇧(k�)} = F�1 {F{fsX�}} ⇤ F�1 {⇧(k/�)}

= fsX� ⇤ F�1 {�⇧(k�)} = fsX� ⇤ sinc(x/�).

f(x) =
1X

n=�1
fn sinc

✓
x� n�

�

◆

F{f X�} �⇧ (k�)

F{fs} = F{f X�}�(k�)
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Now we know that we can reconstruct a band-limited function from an 
infinite number of evenly spaced samples as long as the sampling is 
greater than twice the bandwidth.

What if the sampling is equal to twice the bandwidth?  Can we still 
reconstruct the function?
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Consider a sine of frequency f. We sample at 2f.

When we look at the samples, we see that it could be a sine, or it could be 
the constant 0 function.

So sampling at exactly 2f  is not enough.
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Nyquist Sampling Theorem
Let f be a band-limited function with band-limit B.  Then f  is uniquely 
determined from its samples as long as the sampling frequency was 
greater than 2B according to the following expression:

f(x) =
1X

n=�1
fn sinc

✓
x� n�

�

◆

f = fsX� ⇤ sinc(x/�)
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Forward Transform (Analysis Equations):

We can approximate this integral with a Riemann sum:

F (k) = F{f}(k) =
Z 1

�1
f(x) exp (�i 2⇡ kx) dx

F (k) ⇡
X

j

f(xj) exp (�i2⇡k xj)�xj

Let us assume that a finite number of samples               were gathered with a 
uniform spacing of                  .

{f(xj)}
�xj = 1

F (k) ⇡
N�1X

n=0

f(n) exp (�i2⇡k n)
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Let      be the vector f

Let us consider the frequencies k =

✓
0,

1

N
,
2

N
, . . . ,

N � 1

N

◆
.

F (k) ⇡
N�1X

n=0

f(n) exp (�i2⇡k n)

(f(0), f(1), . . . , f(N � 1)) .

F (k) ⇡
N�1X

n=0

fn exp (�i2⇡k n)

F (km) ⇡
N�1X

n=0

fn exp

⇣
�i2⇡

mn

N

⌘
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Discrete Fourier Transform

DFT{f}m =

N�1X

n=0

fn exp

⇣
�i2⇡

mn

N

⌘

DFT{f} ⇡ F (k)We have just shown that                                              .

Analysis Equations:
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Inverse Fourier Transform (Synthesis Equations):

f(x) = F�1{F}(x) =
Z 1

�1
F (k) exp (i 2⇡ kx) dk

We can approximate this as a Riemann sum:

f(x) ⇡
X

j

F (kj) exp (i 2⇡kjx) �kj

Considering                                          and
x = (0, 1, . . . , N � 1) F =

✓
F (0), F

✓
1

N

◆
, . . . , F

✓
N � 1

N

◆◆

f(x)n ⇡ 1

N

N�1X

m=0

Fm exp

⇣
i2⇡

mn

N

⌘
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We have just shown that                                             .

Inverse Discrete Fourier Transform
Synthesis Equations:

IDFT{F }n =

1

N

N�1X

m=0

Fm exp

⇣
i2⇡

mn

N

⌘

IDFT{F } ⇡ f(x)
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Discrete Fourier Transform

DFT{f}m =

N�1X

n=0

fn exp

⇣
�i2⇡

mn

N

⌘
Analysis Equations:

Synthesis Equations:

IDFT{F }n =

1

N

N�1X

m=0

Fm exp

⇣
i2⇡

mn

N

⌘

Note: both the DFT and the IDFT can be done by a computer.
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The Discrete Fourier Transform and the Inverse Discrete Fourier Transform
are both square matrix multiplications.

The computational complexity of square matrix-vector multiplication is O(n2).

There is a faster way to implement the DFT (and the inverse DFT) called the
Fast Fourier Transform (FFT) algorithm.

The computational complexity of the FFT is O(n log n).
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For simplicity, we will suppose that we gathered N samples:

f = (f(0), f(1), . . . , f(N � 1)) .

Consider the distribution

F {fs X⇧D} =

Z 1

�1
f(x)X(x)⇧D(x) exp (�i 2⇡ kx) dx

f X⇧D.

=

Z D/2

�D/2
f(x)X(x) exp (�i 2⇡ kx) dx
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where we have assumed that the unknown values of f are related to f by its
periodic extension, defined as fp.e.(n) = f(n mod N).

When we evaluate the above expression at                    , we getk = m/N

=

N/2X

n=�N/2

f(n) exp (�i 2⇡ kx)

=

N�1X

n=0

fn exp (�i 2⇡ kn)

This is just the DFT of    .f

F{f X⇧D} (m/N) =

N�1X

n=0

fn exp

⇣
�i 2⇡

mn

N

⌘

F {f X⇧D} (k) =
Z D/2

�D/2
f(x)X(x) exp (�i 2⇡ kx) dx
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Let’s consider, again, the Fourier Transform of 

where

Equating the two expressions yields

DFT{f}m = (F ⇤X ⇤ b)
⇣m
N

⌘
.

So we see that the DFT attains samples of F  corrupted by a convolution with
a comb function (called aliasing) and a sinc (called blurring).

f X⇧D.

F {f X⇧D} (k) = (F ⇤X ⇤ b) (k)
b(k) = D sinc(kD).
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Summary
Nyquist Theorem

We can approximate the Fourier Transform with a 
computer using the Discrete Fourier Transform.

The DFT approximations are corrupted by aliasing and 
blurring.
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