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We have already seen that we can represent a periodic function whose 
domain is all real numbers with a sequence.

This was called the Fourier Series.
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The sequence is the amount each frequency contributes to the periodic 
function.  It is the function’s spectrum.
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This is called the Discrete-Time Fourier Transform.

Periodic
FunctionSequence

We can look at this in reverse and realize that we can represent any 
sequence with a periodic function.
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Here, the periodic function is the spectrum of the sequence.
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Fourier Series
Forward Transform (Analysis Equations):

Inverse Transform (Synthesis Equations):

f(x) =

1X

n=�1
Fn exp

⇣
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⌘
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Discrete Time Fourier Transform
Forward Transform (Analysis Equations):

Inverse Transform (Synthesis Equations):

f [n] =

Z 1

0
F (k) exp (i 2⇡ nk) dk

F (k) =
1X

n=�1
f [n] exp (�i 2⇡ nk)
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A Sampled Function
Consider a function     and its samples

We again construct a weighted delta function:

f {f(n�) : n 2 Z}.

fs =
1X

n=�1
f(n�) �(x� n�).

The spectrum of      is fs F{fs} = F{f X�} = F ⇤ 1

�
X1/�.

These are just replicas of the original spectrum separated by 1/�.

This is the spectrum identified by the DTFT.
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Discrete Convolution

(f ⇤ g)[n] =
1X

m=1
f [m] g[n�m]
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Convolution Theorem

D {f ⇤ g} = D{f}�D{g}

D {f ⇤ g} [n] = D{f}[n] · D{g}[n]
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Many More Theorems
We basically get all the theorems that we had for the Fourier Transform, 
and the Discrete Fourier Transform.

You will prove several of these theorems in your homework.
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Downsampling
Consider a sequence

We can construct a new sequence from this sequence where we keep 
every M th sample of the original sequence.

x = (. . . , x[�2], x[�1], x[0], x[1], x[2], . . .).

y[n] = x[M n]

Mx

y
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y[n] = x[M n]

Downsampling stretches the spectrum of the original signal by a factor of M.

Proof:

D{y}(f) =
1X

n=�1
y[n] exp(�i 2⇡ nf) =

1X

n=�1
x[Mn] exp(�i 2⇡ nf)

=

1X

u=�1
s[u]x[u] exp

⇣
�i 2⇡

u

M

f

⌘

s[u] =

⇢
1 if M divides u
0 otherwise

=
1

M

M�1X

v=0

ei2⇡uv/M

=

1X

u=�1

 
1

M

M�1X

v=0

e

i2⇡uv/M

!
x[u] exp

⇣
�i 2⇡

u

M

f

⌘

D{y}(f) = 1

M

M�1X
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D{x}
✓
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M

◆
.
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D{y}(f) =
1X

u=�1

 
1

M

M�1X

v=0

e

i2⇡uv/M

!
x[u] exp

⇣
�i 2⇡

u

M

f

⌘

=

1

M

M�1X

v=0

1X

u=�1
x[u] exp

⇣
�i2⇡

u

M

(f � v)

⌘
.

Recall:

D{y}(f) = 1

M

M�1X

v=0

D{x}
✓
f � v

M

◆
.Therefore

D{x}(f) =
1X

n=�1
x[n] exp (�i2⇡nf) .
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Original spectrum:

Downsampled by 2:

Downsampled by 3:
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Decimation
Low-Pass filter prior to downsampling to avoid aliasing.
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Upsampling
Consider a sequence

We can construct a new sequence from this sequence where we insert M 
zeros in between every sample.

x = (. . . , x[�2], x[�1], x[0], x[1], x[2], . . .).

M
x

y

y[n] =

⇢
x[n/M ] if M divides n

0 otherwise

y[n] =
1X

m=�1
x[m] �[n�mM ]
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Upsampling shrinks the spectrum of the original signal by a factor of M.

Proof:

D{y}(f) =
1X

n=�1
y[n] exp(�i 2⇡ nf)

y[n] =
1X

m=�1
x[m] �[n�mM ] D{y}(f) = D{x}(M f)

=

1X

n=�1

 1X

m=�1
x[m] �[n�mM ]

!
exp(�i 2⇡ nf)

=

1X

m=�1
x[m]

1X

n=�1
�[n�mM ] exp(�i 2⇡ nf)

=

1X

m=�1
x[m] exp(�i 2⇡mM f)
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Original spectrum:

Upsampled by 2:

Upsampled by 3:
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Interpolation
Low-Pass filter after upsampling to isolate center spectrum.
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Rational Decimation and Interpolation

Mx

yNLPF
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Discrete-Time System
Accepts a sequence as input and outputs a sequence.

We can think of the data coming out of an A/D converter as an endless
stream of data values.  Systems that process this stream are discrete.

Ex: a radio station will continuously broadcast data which gets collected by 
an antenna and converted to a sequence by an A/D converter.

Why do we care?

Ex:  we can look at the price of a stock at each minute that the stock 
market is active.
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Discrete-Time System Definitions

We get all the definitions you’d expect.

Memory, causal, linear, shift invariant, BIBO stable, energy, power

The impulse response of a Discrete-Time System is the response to the
Kronecker delta function.

h[n] = S{�}[n]
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Finite Impulse Response System
A system whose impulse responses have finite support.

If the FIR system is causal, then the impulse responses of the system are 
0 after a finite number of samples.
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Linear Combiner

+ + +

in1 inN�1

out

↵N�1↵2↵0 ↵N�2

in0 inN�2

out =

N�1X

n=0

↵n inn
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Linear FIR Filter
z�1 z�1 z�1

z�1 represents a delay of one sample.

x[n]

y[n]+ + +

↵N�1↵2↵0 ↵N�2

y[m] =
N�1X

n=0

↵n x[m� n] =
N�1X

n=0

h[n]x[m� n] = (x ⇤ h)[n]
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Low-Pass Filter Specifications

1 + �p
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0
f
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fp + fs

2

Cutoff Frequency:

�f = fs � fp

Transition Width:
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Linear FIR Filter Design

Design the spectrum of the ideal filter that you would like.

Perform an inverse DTFT.

Method #1:  (Bad Method)

Keep as many coefficients as you can.

The problem:

When we cutoff coefficients, it’s like we’ve multiplied the impulse response 
by a rect function.

This is convolution with a sinc in the Frequency domain, which causes ringing.
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Linear FIR Filter Design

Design the spectrum of the ideal filter that you would like.

Perform an inverse DTFT.

Method #2:  (Good Method)

Window the coefficients so that they approach zero smoothly.

Keep as many coefficients as required.

28



The parameters are the filter length             and shape parameter    .

Discrete Kaiser Window

w[n] =

8
><

>:

I0

✓
�
q

1�
[

n�↵
↵ ]

2
◆

I0(�)
0  n  M

0 otherwise

↵ = M/2

�M + 1

Discrete-Time Signal Processing by Oppenheim and Schafer
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Kaiser Window LP-FIR Filter
Kaiser developed empirical methods to determine      and      .

Discrete-Time Signal Processing by Oppenheim and Schafer

� =

8
<

:

0.1102(A� 8.7) A > 50
0.5842(A� 21)0.4 + 0.07886(A� 21) 21  A  50
0 A < 21

� = min(�p, �s)

M =
A� 8

4.57⇡�f
± 2

� M

A = �20 log10 �
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Kaiser Window FIR Filter
To design a band-pass or high-pass filter:

Discrete-Time Signal Processing by Oppenheim and Schafer

Design a low-pass filter.

Shift the filter to the appropriate band (in the frequency domain).

This corresponds to multiplication by a linear phase in the time 
domain.
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Parks-McClellan and Least-Squares are two other filter design algorithms.
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