
Making Virtual Worlds
Computer Graphics Lecture 1

Nicholas Dwork

1

Making Virtual Worlds
We must make the objects in our virtual world.
We must color the objects in our virtual world.

We can add light sources in our virtual world.
E.g. the sun, a light bulb

We can give our objects reflectances.
We can specify how much specular and diffuse
reflectivity each object has.

We’ll make videos of our virtual world!

2

Creating a Coordinate System

Our world will be a 3D Euclidean Space.

This space has an origin.

Everything will be relative to this point.

3

Making Objects
Objects are constructed from triangles.

Here I’ve made a box
from triangles.

We “make” the triangles by
specifying the coordinates
of each vertex.

4

Face From Triangles

http://www.final-surface.com/refining.php

5

Adding Color
We can add color to our objects.

The simplest way of adding
color is to specify an RGB
value for each triangle.

This is how we’ll start.

6

Placing the Camera
Once we have constructed our objects from triangles,
we can image them with our virtual camera.

7

Adding Color to Mesh

Video

http://izismile.com/2014/02/12/beautiful_photorealistic_human_eye_in_3d.html

8

Placing the Camera
Once we have constructed our objects from triangles,
we can image them with our virtual camera.

We must specify the intrinsic parameters of the
camera, its location, and its roll, pitch, and yaw.

This completely specifies the camera matrix.

9

We already know how to do everything in this lecture
so far.

We’ll now make the image, which will be the focus of
the rest of this lecture.

10

Ray Tracing
For each pixel of the image

1. Create a line that connects the pixel and the camera
center

• Point the line forward

2. For each triangle in the virtual world
• Intersect the line with the plane containing the

triangle
• See if the intersection lies within the triangle
• If it lies within the triangle, store the color and

distance

3. Color the pixel with the color of the closest triangle

11

Suppose P is the camera matrix. Then we know the
relationship between 3D points and image locations.

x = P X

Up until now, we’ve understood this equation by saying
“we can map a point in the world X to a location in the
image x”.

12

We can use P to map an image point to a world point.

Note that P is not square, and so it can’t be invertible.

X

0 = P \x

This makes sense!

13

Any point on the line between the cat’s paw and
the image plane maps to the same image point.

X

0 = P \x
But then, what is X’ ?

14

X’ is some point on the line, but we don’t know
which one.

X’

C

C is the camera center.

X’ - C is a vector on the line (or ray)
that intersects the specified pixel.

15

Now that we have a vector that is parallel to the
line and a point on the line (C), we can write the
equation of the “ray”.

X’

C

f(t) = C + t (X 0 � C)

16

Ray Tracing
For each pixel of the image

1. Create a line that connects the pixel and the camera
center

• Point the line forward

2. For each triangle in the virtual world
• Intersect the line with the plane containing the

triangle
• See if f(t) lies within the triangle
• If it lies within the triangle, store the color and

distance

3. Color the pixel with the color of the closest triangle

17

Since any point on the line projects to the same pixel,
we don’t know which way (X’ - C) is pointed.

X’
C

X’

C

f(t) = C + t (X 0 � C)

18

P = KR
⇥
I �C

⇤

The pointing direction of the camera is completely
specified by the matrix R.

In fact, the third row of R is a vector on the
principal ray.

The roll of the camera doesn’t matter because
changing the roll doesn’t change the principal axis
of the camera.

So intuitively, we don’t even need all of R.

v = r3T

19

X’
C

X’

C

v

v

Recall: The dot product can be used to determine
whether or not the angle between two vectors is
acute or obtuse.

20

v · (X 0 � C) > 0

v · (X 0 � C) < 0

Now we know that if t is positive, then the point is
in front of the camera. Otherwise, the point is
behind the camera.

f(t) = C + t r

r = X 0 � C

r = C �X 0

If then

If then

21

Ray Tracing
For each pixel of the image

1. Create a line that connects the pixel and the camera
center
• Point the line forward

2. For each triangle in the virtual world
• Intersect the line with the plane containing the

triangle
• See if the intersection lies within the triangle
• If it lies within the triangle, store the color and

distance

3. Color the pixel with the color of the closest triangle

22

Equation of Plane Containing Triangle

For the equation of a plane, we need:
A normal vector
A point on the plane

We have:
The vertices of the triangle

a

b

c

23

Equation of Plane Containing Triangle

Any vertex can be a point in the plane.

a

b

c

v1 = b� a

v2 = c� a

v1

v2

We still need a normal vector.

Now we can use the cross product!

n

n = v2 ⇥ v1

24

Line-Plane Intersection
The ray is represented as

The plane containing the triangle is represented as

n · (p� a) = 0

where a is any vertex, and n is the normal vector.

We can combine these equations into one.

f(t) = C + t r

25

Line-Plane Intersection

n · (p� a) = 0

We need the value of t so that n · (f(t)� a) = 0

Equivalently,

Now that we know t, f(t) is
the point where the ray
intersects the plane.

f(t) = C + t r

n · (C + t r � a) = 0

t =
n · (a� C)

n · r
If t is negative, we discard this intersection
and go on to the next triangle.

26

Ray Tracing
For each pixel of the image

1. Create a line that connects the pixel and the camera
center
• Point the line forward

2. For each triangle in the virtual world
• Intersect the line with the plane containing the

triangle
• See if the intersection lies within the triangle
• If it lies within the triangle, store the color and

distance

3. Color the pixel with the color of the closest triangle

27

Intuition
We will create a vector from f(t) to a point outside the
triangle.

We will count the number of times this vector crosses
and edge.

If the number is odd, then the point lies inside the
triangle. Otherwise, it’s outside.

a

b
c f(t)

g

u

28

A Distant Point

Calculate the three edge vectors .
Note that edge vectors are tip-to-tail.

v1, v2, v3

a

b
c f(t)

g

v1

v2

v3

Add to a to get a point g outside the triangle.v3

u

Calculate vector .u = g � f(t)

29

Crossings
Set number of crossings to 0.
For each edge vector

If the intersection point lies between f(t) and g, add 1
to the number of crossings.

a

b
c f(t)

g

v1

v2

v3
u

Find the intersection between the line containing the
edge vector and .u

If the number of
crossings is odd, then
the point is inside the
triangle.

30

Ray Tracing
For each pixel of the image

1. Create a line that connects the pixel and the camera
center

2. For each triangle in the virtual world
• Intersect the line with the plane containing the

triangle
• Make sure the intersection is in front of the camera
• See if the intersection lies within the triangle
• If it lies within the triangle, store the color and

distance

3. Color the pixel with the color of the closest triangle

31

Camera

The ray shown would see the green triangle but not
the blue triangle.

32

We can now make a virtual world!

33

