
Initial Applications
Image Processing Lecture 1

Nicholas Dwork

1

Images
Recall that images are 2D arrays of numbers.

We can do math with them!

2

First order difference

+-

Old Image

New Image d1

3

First order difference

+-

Old Image

New Image d1 d2

4

First Order Difference

+-

Old Image

New Image d1 d2 d3 0

5

Digital Elevation Map
Each pixel is a number
designating the
location’s height.

Hawaii

The brighter the pixel,
the higher the point.

6

Relief Distortion Map
First order difference applied to Digital Elevation Map

7

Isolating a small region

8

Mean of Square Region

a11

a21

a31

a12

a22

a32

a13

a23

a33

Mean =

+a22 + a23 + a31 + a32 + a33)

1

9
(a11 + a12 + a13 + a21

9

Mean Filtering
Replace each pixel with its local mean.

Also called “Box Car Averaging”
25x25 pixel kernel

10

Mean

v1 v2 vN

Image with values v :

Weights:

1/N 1/N 1/N 1/N. . .

11

Mean

v1 v2 vN

Image with values v :

Weights:

This seems weird. The values in the middle should
matter more than values far away.

1/N

12

Weighted Mean
Rather than weighting each point equally, weight
them differently.

Weights:

Modifying the weights can solve this.
A Gaussian function is a good choice (fspecial in Matlab).

v1 v2 vN

13

Gaussian Function

Size of Kernel

Sigma

Sigma tells you how flat
the weights are.
The higher the sigma, the
flatter the weights.

The size of the kernel
tells you how many
pixels you’re including.

14

Weighted Mean Filtering
Box Car Filter

Gaussian Filtering retains a lot more of the information.

25x25 pixel kernel 25x25 pixel kernel
sigma = 5

Gaussian Filter

15

Image Denoising
Noisy Image

9x9 pixel kernel
sigma = 3

Gaussian Filter

16

Difference of Gaussians

Compute two Gaussian
Filtered Images

Low Sigma

High Sigma

+
-

Compute
Magnitude of

Result

To find features automatically, we will use this
algorithm.

17

Interesting pixels are bright.

We can use some of these pixels as feature points.

18

Finding Feature Points
1) Zero out the region
near the border of the
image.

These points don’t
make good features.

2) Find the brightest
point in the DoG
image.

This is your first
feature point.
Use ind2sub.

19

3) You don’t want
points that are too
close to your current
point.

Set the DoG image to
zero anywhere close
to your feature.

4) Return to step 2.
Do this until you get
the number of
features you want.

20

Tracking Features
Now that we’ve found features, we need to track
them into the other image.

?
That is, we want to find those same features in the
next image.

21

Metric of Fit

a11

a21

a31

a12

a22

a32

a13

a23

a33

We can use as a metric of how well two regions of
pixels match.

b11

b21

b31

b12

b22

b32

b13

b23

b33

The value of the metric in this case will be high.
The best value possible is 0.

k~a�~bk

22

Tracking the Feature
Identify a small region around the feature, called the
kernel (e.g. 15 x 15).

Img 1 Img 2

X

23

Tracking the Feature
Identify a larger search region centered on the feature
in the second image.

Img 1 Img 2

X

24

Tracking the Feature
Calculate the metric of fit between the kernel and every
possible subset in the Search Space.

Feature Search Space

25

Tracking the Feature

Feature Search Space

Calculate the metric of fit between the kernel and every
possible subset in the Search Space.

26

Tracking the Feature

Feature Search Space

Calculate the metric of fit between the kernel and every
possible subset in the Search Space.

27

Tracking the Feature

Feature Search Space

. . .

Calculate the metric of fit between the kernel and every
possible subset in the Search Space.

28

Tracking the Feature

Feature Search Space

Calculate the metric of fit between the kernel and every
possible subset in the Search Space.

29

Tracking the Feature

Feature Search Space

Calculate the metric of fit between the kernel and every
possible subset in the Search Space.

30

Tracking the Feature

Feature Search Space

. . .

Calculate the metric of fit between the kernel and every
possible subset in the Search Space.

31

Tracking the Feature

Feature Search Space

. . .

Calculate the metric of fit between the kernel and every
possible subset in the Search Space.

32

Tracking the Feature
We have filtered the search space with the feature image.

Feature Metric Image

The minimum of the metric image is the feature’s
location.

33

Rejecting Bad Matches
Sometimes our algorithm will make errors in the
tracking.

We need a way to reject these outliers.

The RANSAC algorithm is a way of figuring out
which features are matched well and which are
erroneous.

34

Measuring Points on a Line
We measure points on a line. Due to noise, the points
don’t lie on the line exactly. Some are very bad.

Goal: Find the line.

35

RANSAC
1) Choose two points randomly. Draw the line
between those points.

36

RANSAC
2) Count the number of points that lie within a
threshold distance of that new line.

37

RANSAC
3) Return to step 2.
4) Iterate many times. The line with the highest
number of points is the best estimate! We also
know which points are bad.

38

We have been discussing how to use RANSAC to
find which points belong to a line.

We will now use RANSAC to identify which
features were poorly tracked.

A homography will take the place of a line.
Key: a minimum of four matched points are
required to determine a homography.

39

RANSAC with Features
1) Choose four matched points randomly. Determine
the homography for those points.

40

RANSAC with Features
2) Project the points from Image 1 into Image 2.
3) Count the number of features that are smaller than
a distance threshold.

41

RANSAC with Features
4) Go back to step 1.
5) Iterate many times. The homography with the most
number of matches is your estimate!

42

RANSAC with Features
6) Those features that are consistent with your best
homography are the inliers. Those that aren’t are the
outliers.

43

Summary

Now we can find and track features automatically!

We’ve discussed how to find features.

We’ve discussed how to track those features into a
second image.

And we’ve discussed how we can find features that
were tracked well, and those that were wrong.

44

