Initial Applications

Nicholas Dwork
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Systems of Equations

Suppose we have multiple equations:
20 — 5y = 8
3r+9%y = -—12

We can rewrite these equations as a single equation
using matrices.
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It then becomes easier to solve!
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2D Rotation Matrix

Rotating a point about the origin by angle 0:

2D Rotation Matrix

Rotating the axis by angle 0:

cos(f)  sin(0)

R(6) = [— sin(f) cos(0)




2D Translation
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3D Rotation X Matrix

A rotation of a point about the x axis.

1 0 0
z R.(0) = {O cos(0) sin(@)]
0 —sin(f) cos(d)
P L p;; Px
[ {pg = Ry (6) py]
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3D Rotation Y Matrix

A rotation of a point about the y axis.

{cos(ﬁ) 0 — sin(@)]
R@=| 0 1 0
sin(f) 0  cos(0)
o P |: L m]
p; = Ry (0) |py
¥ ; z
p/
p' = Ry(0)p

3D Rotation Z Matrix

A rotation of a point about the z axis.

cos(f)  sin(0)

R.(0) = [—sin(f) cos(0)
0 0
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3D Translation

p+Ap=7p

A Ax
Ap = | Ay
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Roll, Pitch, and Yaw

Yaw

Note: rotations are defined with respect to the object
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Since matrices don’t commute, it’s not enough to
know which axis roll, pitch, and yaw correspond to.

You must also know which order they are applied.

Two common conventions: I
Roll - Pitch - Yaw o pien
Yaw - Pitch - Roll
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Real Number Line
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Homogeneous Numbers

Each value is represented using two real numbers.

Homogeneous Euclidean
T
(377 w) E
(8,1) 8
(16,2) 8
(2m,0.5) A
(3,0) No equivalent

The representation of a value is no longer unique.

We’ve added two points that we previously didn’t have:
We call these the points at infinity.
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Homogeneous Line

a

-
-
-
\ 4

14




2D Homogeneous Coordinates

Each coordinate is represented using 3 real numbers.

Homogeneous Euclidean
i E)
(,9,w) (=2
1 2
1,2,3 -, =
(12,3 (53)
(8,—2,0) No equivalent

There exist a set of points (a,b,0) that do not exist in
Euclidean coordinates.
We call this set “The line at infinity”.
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The Homogeneous Plane
Y

It’s like we’ve added a ring around the Euclidean plane.
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3D Homogeneous Coordinates

Each coordinate is represented using 4 real numbers.

Homogeneous Euclidean
r Yy z
(l’,y,Z,UJ) (_7_7_>
w w w
(x,y,2,0) No equivalent
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Homography

A square matrix applied to homogeneous coordinates.
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