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Systems of Equations

2x� 5y = 8
3x+ 9y = �12

Suppose we have multiple equations:

We can rewrite these equations as a single equation
using matrices.
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It then becomes easier to solve!
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2D Rotation Matrix
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2D Rotation Matrix
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2D Translation
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3D Rotation X Matrix
A rotation of a point about the x axis.
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3D Rotation Y Matrix
A rotation of a point about the y axis.
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3D Rotation Z Matrix
A rotation of a point about the z axis.
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3D Translation
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Roll, Pitch, and Yaw

http://theboredengineers.com/2012/05/the-quadcopter-basics/

Note:  rotations are defined with respect to the object
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http://theboredengineers.com/2012/05/the-quadcopter-basics/

Since matrices don’t commute, it’s not enough to
know which axis roll, pitch, and yaw correspond to.

You must also know which order they are applied.

Two common conventions:
Roll - Pitch - Yaw
Yaw - Pitch - Roll
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Real Number Line

Question:  How do we represent the value infinity 
as a real number?

0 1�1

Answer:  you can’t.  Infinity is not a real number.
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Homogeneous Numbers
Each value is represented using two real numbers.

Homogeneous Euclidean
(x,w)
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The representation of a value is no longer unique.
We’ve added two points that we previously didn’t have:

We call these the points at infinity.
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Homogeneous Line
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2D Homogeneous Coordinates
Each coordinate is represented using 3 real numbers.

Homogeneous Euclidean

(x, y, w)
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There exist a set of points (a,b,0) that do not exist in
Euclidean coordinates.

We call this set “The line at infinity”.
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The Homogeneous Plane
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It’s like we’ve added a ring around the Euclidean plane.
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3D Homogeneous Coordinates
Each coordinate is represented using 4 real numbers.

Homogeneous Euclidean

No equivalent
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Homography

A square matrix applied to homogeneous coordinates.
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