Matlab Fundamentals

Nicholas Dwork

Text Files

Computer code is written in text files.
A text file often has the extension *.txt.

Computer code text files often have other extensions:
These extensions indicate the language
*.m - matlab file
*.c - ¢ file
*.cpp - ¢ plus plus file
*.Js - javascript
*.html = webpage

Note: *.doc is not a text file

Comments

A comment starts with the % symbol.

A comment does absolutely nothing. It’s just a
note from the programmer

Ex:
% Hi fellow coder, this is a comment

Variables

A variable is a container that you can hold values.

L

AN

Variables have names. You can put a value in the
container with the equal sign.

% X =8;

The thing on the left gets
the value on the right.

X

Types of Variables

Numbers: X = 8;
Arrays: x=1[2,35,7,9,11,13,17];
Characters: X =‘a’;
= ‘x’;
Strings: x = ‘This is a string’;

Note: a string is an array of characters;

We can then use that variable in expressions

In the above example, y gets the value 10.

Arrays
Arrays: x =[2,3,5,7,911,13,17];

An array is an ordered list of numbers.
You can get individual elements by using ().

The value of x(1) is 2.
The value of x(2) is 3.
The value of x(6) is 11.

X =1:8; Makes the array [1,2,3,4,5,6,7,8]

Making Arrays

x=1[2,35,7,9,11,13,17]; Make the array explicitly.

X =18; Makes the array [1,2,3,4,5,6,7,8]

x = zeros(10,1); Makes an array of 10 elements,
all values are zero.

x =o0nes(10,1); Makes an array of 10 elements,
all values are one.

Functions

A function is a programming machine
You input stuff

You get something out

input
To define a function in Matlab: variables
function [out1,...,0utN] = myFunction(in1, in2, ..., inM)

N S N

output function name
variables

10

Function Files

Each function you create will be a separate file.

11

Ex: Printing a phrase to the screen:

disp(‘Hello World!’);

The name of the function is disp
Meant to be short for display

The input to the function is a string: ‘Hello World’

This function has no output

12

Calling a Function

X = 8;

Yy =X+ 2;

disp(y);
Flow

Main Function

ATATARFATATAYA!

A

otherFunction

otherFunction

— <
\z

14

Scope

A variable only exists inside the function where it is
created.

function main() function out = myFunc(a, b)
x = 10; —elisp{x);-
y = 20; out=a + b;
z =myFunc(x, vy); end
disp(z);
end

The value displayed is 30.
The slashed line causes an error; x does not exist there.

15

Matlab Programming Environment

e0e@ <Student Version> MATLAB R2013a

HOME PLOTS APPS BELAEROeR @l Search Documentation 0 H

| New Variable < Analyze Code o] {0} Preferences
G ol I gemees | 0 3 2 =< & [=2 () ¢35 Community
[Open Variable (7 Run and Time " [Set Path
New New Open | |Compare Import Save Simulink Layout Help o Add-Ons +
Script v v Data Workspace |’ Clear Workspace v |’ Clear Commands ~ Library ~ JParallel v -
FILE VARIABLE copE SIMULINK ENVIRONMENT RESOURCES
B / » Users » ndwork » Documents » MATLAB » v R
Current Folder @ <Student Version> Command Window (O] Workspace ®
B Name & Name 4 Value
> [cvx Student License -- for use in conjunction with courses offered at a
degree-granting institution. Professional and commercial use prohibiteq
f EDU>>
Command History ®
imshow(¢, [])
c = img;
c(i,1,1)=0; c(z,:,3
imshow(¢, [])
c = img;

c(:,:,1)=0; c(z,1,
imshow(¢, [])
close all
clear
cle
%-- 5/7/15, 7:09 PM -
%-- 5/8/15, 8:27 AM -
%-- 5/8/15, 9:56 PM -

Details ~

Ready

16

Command Window

Can run single lines of code (including your own
functions) into the command window.
Things that are displayed get displayed here.

17

Current Working Directory

You can use any functions in files that are located in this
directory.

Make a new directory for any program you create.

18

Navigator Window

Shows files and directories.

19

Workspace

Shows variables that currently exist and their values.

20

Command History

Shows recent commands that you’ve written into the
command window.

21

New Function File

To create a file for a new function, hit the “New Script”
button.

22

The Editor Window

You can write new functions using the editor window.
You also debug in the editor window (discussed later).

ece Editor - untitied3
EDITOR PUBLISH VIE 2! o =
ﬁ i E L Find Files Insert S B IR AR E & >§ 2/ uns
n Se
New Open swe A COEE'E T Comment % g £} lGoTo - e R % Advar
= Indent o2 < Find b
-

script [ln 1 Col 1

23

Hitting “Run” runs the current file shown.

24

The editor window can be combined with the
Development Environment. Select “Dock” from this
drop down menu.

200
ME ots AP 7

[- T S =

= (O e Run Section
SiGoTo ~

save reakpoints Run Runand Runand | Nvance

B ~ Time Advance
3 NAVIGATE | BREAKPOINTS aun
» Users » ndwork » > M » -lp

Current Folder Ol B Editor - untitled3 [CEEN Workspace
untitled3 Name &

uuuuu

<Student Version> Command Window

Jx EDU>>

25

The Debugger

Allows the coder to stop the code in the middle and
investigate.

- Compare » Comment 9%
New Open Save &= 2 o

In the editor window, ML AL = LA N T

FILE EDIT

click here to add a testFunction.m
“break point”

; function testFunction
*31 = base = 4;
o height = 3;
When you hit run, g— area = base * height;
the program will 10
stop at the break

point.

- end

26

The arrow indicates the next line to be executed.

Can print variable
values in the
command window.

R .

710 testFunctionm

function testFunction

- base = 4;
O || height = 3;

area = base * height;

end

CWVWoONOULLd WN K-

[

27

Hit “Step” to advance one line.

28

Hit “Step Into” if the next line is a function, and
you would like to go through the function.

m

29

Hit “Continue” to run until the next breakpoint.
If there are no more breakpoints, it will run until
the program completes.

30

Hit “Quit” to exit the debugger.

31

Getting Help

If you know the function name:

Type help function_name on command line
Simple text help

Type doc function_name on command line
More complete help document

Type matlab function_name into Google
All of Matlab’s help documents are online

32

Getting Help

If you don’t know the function name:
Use a web search engine (e.g. Google).

There’s a giant vibrant community of Matlab
users helping each other out though the web.

33

Comparison Operators

Return 1 if true, and 0 otherwise

== Tests to see if two expressions are equal
Ex: a==D

~= Tests to see if two expressions are not equal
Ex: a~=Db

34

Return 1 if true, and 0 otherwise

Tests to see if the thing on the left is greater
than the thing on the right.
Ex: a>b

Tests to see if the thing on the left is greater
than or equal to the thing on the right.
Ex: a>=Db

35

Matrices

x=[1,23:4,5,6;7,8,9];

x becomes the following matrix:

F

Matrices are two dimensional arrays

A =
oo Ot N

36

Accessing Values

x=[1,23,45,6;7,8,9];

x21 =x(2,1);

disp(x21); % displays 5 to the screen

X2 = Xx(2,:);

disp(x2); % displays [4;5;6] to the screen

37

Manipulating Matrices

[1,2,3:4,5,6;7,8,
[10,0, 0; O, 10, O; O,

X 9,
y 0, 10];
addResult = x + v;
subtractResult = x - y;
multiplyResult = x * y;
pointwiseMultiplication = x .* y;

38

Matrix Inversion

Ax =b

How do we solve forx? =z = A~ 'b

In Matlab: x=A\ b;

39

If ... Then ... Else

if a==

disp(‘a is equal to 1');
else

disp(‘a is not equal to 1’);
end

Only branch satisfying condition is executed.

40

For Loops

fori = first: last
% do something here
end

For each value of i, the code inside the loop gets
executed.

41

x=[1,2,3,4,56;7,8,9];
fori=1:3

disp(x(i,:))
end

This code displays [1;2;3] then [4;5;6] then [7;8;9].

42

2D Array

57 67 96 82 87 81
66 63 83 85 62 98
94 70 64 53 75 102
129 102 121 99 96 123
133 102 129 125 119 140
174 174 170 172 166 184

43

Rather than showing the numbers, we can show
corresponding colors. O=black, and 255=white.

44

Here’s a larger array.
O=black, and 255=white.

45

We can always go back to the array of numbers.

48 47 60 71 121 105 64 89 125 97 18 108
43 49 59 49 72 63 60 90 65 78 54 103
51 65 59 85 123 118 92 61 50 65 77 128
61 74 71 50 44 75 104 109 93 59 49 143
79 82 88 38 57 71 21 40 106 64 45 145
94 100 106 57 76 94 61 34 109 61 65 152
105 123 99 68 98 93 69 74 111 65 82 160
132 153 102 128 153 146 91 141 141 74 96 167
144 136 76 107 154 173 119 131 150 102 109 171
123 125 112 88 92 96 109 121 119 117 114 170
154 153 160 158 152 153 156 152 147 146 143 186

46

Here’s a larger array.
O=black, and 255=white.

47

Here’s an even larger array. Now we have too many
numbers to display on this screen.
O=black, and 255=white.

48

And larger ...
O=black, and 255=white.

49

And larger
O=black, and 255=white.

50

Still larger. At this point, our eye can no longer discern
most of the individual pixels.
0O=black, and 255=white.

51

Largest.
O=black, and 255=white.

52

Images

Big Conclusion: Images are just 2D arrays that are
displayed in an interesting way!

At some point, your eye can no longer distinguish the
individual pixels.

In Matlab, images and matrices are exactly the same.

53

Color Image

A color image is three different arrays.
The computer displays one of the arrays for red,
one for green, and one for blue.

54

Image Files

*.jpg, *.png, *.gif, *.bmp are all types of image files

We'll discuss the differences between these file
types later in the class.

55

Loading an Image

To load an image into data:

variable that is the image

/

img = imread(“filename.jpg”);

T

matlab function file stored on

computer

56

Color Image Components

img(:,: 1) % the red 2D array
img(:,: 2) % the green 2D array
img(:, :, 3) % the blue 2D array

57

Making a Gray Image

The function rgb2gray converts a color image (3D
array) into a grayscale image (2D array).

graylmage = rgb2gray(colorimage);

58

Displaying an Image

The function imshow displays an image on the
screen.

imshow(mylmage, []):

59

Plotting

x = 1:10;
y = exp(X);
plot(x, y);

Makes the figure
on the right.

60

Adding Labels

x =1:10;

y =exp(Xx),

plot(x, y);
xlabel(‘Time (ms)’);

ylabel(‘Distance (m)); al /]

S
Time (mns)

61

Plotting Multiple Functions

x = 1:10;
y1 =exp(x); o
y2 = exp(0.9"x); /
plot(x, y1);

hold on; | /]
plot(X, y2);
hold off;

xlabel(‘Time (ms)

);
ylabel(‘Distance (m)’);

62

