Vector Spaces

Math Lecture 3

Nicholas Dwork

1

Binary Operation

Given a set S, a Binary Operation is a rule for mapping pairs of elements of S to another element of S.

Vector Space

A vector space over a field F is a set S with binary operations + and x that satisfy the following:

```
There exists an element 0 such that u + 0 = u

u+v = v+u

(u+v)+w = u+(v+w)

For any u there exists -u such that u + (-u) = 0
```

There exists a scalar 1 such that $1 \times u = u$

```
For any scalar k, k (u + v) = ku + kv
For any scalars k1 and k2, (k1 + k2) u = k1 u + k2 u
```

3

Examples of Vector Spaces

 \mathbb{R}^2 Euclidean Plane

 \mathbb{R}^3 Euclidean Space

 \mathbb{R}^{3000}

The set of all functions

The set of all continuous functions

The set of all polynomials of order 4.

Subspace

A subset of a vector space that is also a vector space is called a subspace.

To show that a subset of a Vector Space is a subspace, one must show:

It contains the 0 vector
It is closed under scalar multiplication
It is closed under vector addition

Example:

Any plane through the origin is a subspace of \mathbb{R}^3

5

Basis

A Basis for a Vector Space V is a set of linearly independent vectors that spans the space.

The standard basis is denoted by ϵ

For \mathbb{R}^3 , the standard basis is $e=\{e_1,e_2,e_3\}$.

$$e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \quad e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \quad e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Dimension

The size of any basis for a Vector Space V is the same.

The size of the basis is called the Vector Space's Dimension.

A Vector Space may not have a finite dimension.

7

Projection Onto Vector Space

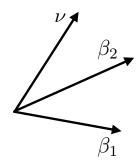
We've already discussed how to project a vector onto another vector.

Now we'll project a vector onto a Vector Space.

Projection Onto Vector Space

Let $\beta = \{\beta_1, \beta_2, \dots, \beta_N\}$ be a basis for the Vector Space V.

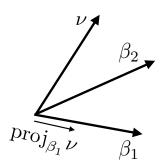
We would like to project $\, \, \mathcal{V} \,$ onto $\, \mathcal{V} .$



9

Projection Onto Vector Space

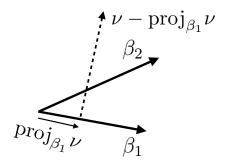
First, project ν onto β_1 .



Projection Onto Vector Space

First, project ν onto β_1 .

Subtract $\operatorname{proj}_{\beta_1} \nu$ from ν .

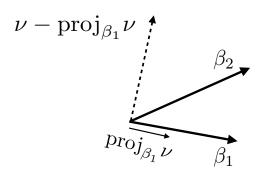


11

Projection Onto Vector Space

First, project ν onto β_1 .

Subtract $\operatorname{proj}_{\beta_1} \nu$ from ν .

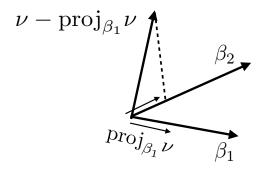


Projection Onto Vector Space

First, project ν onto β_1 .

Subtract $\operatorname{proj}_{\beta_1} \nu$ from ν .

Project $u - \mathrm{proj}_{\beta_1}
u$ onto β_2 .



13

Projection Onto Vector Space

The projection of $\, \nu \,$ onto the Vector Space $\, V \,$ is

$$\operatorname{proj}_{\beta_1} \nu + \operatorname{proj}_{\beta_2} \left(\nu - \operatorname{proj}_{\beta_1} \nu \right)$$

$$\operatorname{proj}_{\beta_2} \left(\nu - \operatorname{proj}_{\beta_1} \nu \right)$$

$$\operatorname{proj}_{\beta_2, \nu}$$