Matrices Math Lecture 4

Nicholas Dwork

1

Matrices

A matrix is a rectangular array of numbers.

Example:

$$\begin{bmatrix} 0 & 1 & -2.3 & 0.1 \\ 1.3 & 4 & -0.1 & 0 \\ 4.1 & -1 & 0 & 1.7 \end{bmatrix}$$

This matrix has 3 rows and 4 columns. We call it a 3x4 matrix.

A matrix with the same number of rows and columns is called a square matrix.

Matrix Transpose

The transpose of the matrix is the result of flipping the matrix about its diagonal.

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1N} \\ a_{21} & a_{22} & & a_{2N} \\ \vdots & & \ddots & \vdots \\ a_{M1} & a_{M2} & & a_{MN} \end{bmatrix}^T = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{M1} \\ a_{12} & a_{22} & & a_{M2} \\ \vdots & & \ddots & \vdots \\ a_{1N} & a_{2N} & & a_{MN} \end{bmatrix}$$

3

Matrix-Scalar Multiplication

$$k \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1N} \\ a_{21} & a_{22} & \cdots & a_{2N} \\ \vdots & & \ddots & \vdots \\ a_{M1} & a_{M2} & \cdots & a_{MN} \end{bmatrix} = \begin{bmatrix} k a_{11} & k a_{12} & \cdots & k a_{1N} \\ k a_{21} & k a_{22} & \cdots & k a_{2N} \\ \vdots & & \ddots & \vdots \\ k a_{M1} & k a_{M2} & \cdots & k a_{MN} \end{bmatrix}$$

Each element of the matrix is multiplied by the scalar.

Matrix-Vector Multiplication

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1N} \\ a_{21} & a_{22} & \cdots & a_{2N} \\ \vdots & & \ddots & \vdots \\ a_{M1} & a_{M2} & \cdots & a_{MN} \end{bmatrix} v = \begin{bmatrix} a_{11} \\ a_{12} \\ \vdots \\ a_{1N} \end{bmatrix} v_1 + \begin{bmatrix} a_{21} \\ a_{22} \\ \vdots \\ a_{2N} \end{bmatrix} v_2 + \cdots + \begin{bmatrix} a_{M1} \\ a_{M2} \\ \vdots \\ a_{MN} \end{bmatrix} v_N$$

The result is a linear combination of the columns of the matrix.

The linear coefficients are the elements of the vector.

5

Matrix-Vector Multiplication

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1N} \\ a_{21} & a_{22} & \cdots & a_{2N} \\ \vdots & & \ddots & \vdots \\ a_{M1} & a_{M2} & \cdots & a_{MN} \end{bmatrix} v = \begin{bmatrix} - & r_{a,1}^T & - \\ - & r_{a,2}^T & - \\ \vdots & & \vdots \\ - & r_{a,M}^T & - \end{bmatrix} v = \begin{bmatrix} r_{a,1}^T v \\ r_{a,1}^T v \\ \vdots \\ r_{a,M}^T v \end{bmatrix}$$

Each element of the result is the dot product of the rows of the matrix with the vector.

Identity Matrix

The Identity Matrix is a matrix with 1s along the diagonal and zeros everywhere else.

$$I = \begin{bmatrix} 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & & \ddots & & \vdots \\ & & 1 & 0 \\ 0 & & \cdots & 0 & 1 \end{bmatrix}$$

Question: What is $\,Iv\,$ for any vector $\,v\,$?

7

Consider an $M \times N$ Matrix A with real entries.

Matrix-vector multiplication with matrix A is a function!

Consider an $\,M \times N\,$ Matrix $\,A\,$ with real entries.

Matrix A can only multiply vectors from \mathbb{R}^N . So that's its Domain.

9

Consider an $\,M \times N\,$ Matrix $\,A\,$ with real entries.

Multiplication by A can only output vectors from \mathbb{R}^M so that's its Range.

Image of a Matrix

The set of all $M \times$ is called the Image of M.

The Image of a matrix is a subset of the Range.

11

Pre-image of a Matrix

The set of all inputs that map to a value is called the pre-image of that value for the Matrix.

The Pre-image of a value is a subset of the Domain.

$$Im(M) = \{ Mx \text{ for all } x \in \mathbb{R}^M \}$$

 $Pre-image(y) = \{x \text{ such that } Mx = y\}$

13

Question: What is the Image of Matrix A?

Matrix-Vector Multiplication

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1N} \\ a_{21} & a_{22} & \cdots & a_{2N} \\ \vdots & & \ddots & \vdots \\ a_{M1} & a_{M2} & \cdots & a_{MN} \end{bmatrix} v = \begin{bmatrix} a_{11} \\ a_{12} \\ \vdots \\ a_{1N} \end{bmatrix} v_1 + \begin{bmatrix} a_{21} \\ a_{22} \\ \vdots \\ a_{2N} \end{bmatrix} v_2 + \cdots + \begin{bmatrix} a_{M1} \\ a_{M2} \\ \vdots \\ a_{MN} \end{bmatrix} v_N$$

The result is a linear combination of the columns of the matrix.

The linear coefficients are the elements of the vector.

15

Image of a Matrix

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1N} \\ a_{21} & a_{22} & \cdots & a_{2N} \\ \vdots & & \ddots & \vdots \\ a_{M1} & a_{M2} & \cdots & a_{MN} \end{bmatrix} v = \begin{bmatrix} a_{11} \\ a_{12} \\ \vdots \\ a_{1N} \end{bmatrix} v_1 + \begin{bmatrix} a_{21} \\ a_{22} \\ \vdots \\ a_{2N} \end{bmatrix} v_2 + \cdots + \begin{bmatrix} a_{M1} \\ a_{M2} \\ \vdots \\ a_{MN} \end{bmatrix} v_N$$

From the definition of Matrix-Vector multiplication, we see that the Image of a Matrix is the span of its columns.

Another name for the Image of a Matrix is "column space".

Image of a Matrix

$$\operatorname{Im}(A) = \operatorname{span}(c_1, c_2, \cdots, c_N)$$

where C_i is the i^{th} column of a matrix.

Note that $\,0\,$ is always in the image. It's the output when $\,0\,$ is the input.

17

Null Space of a Matrix

The Null Space of a Matrix is the Pre-image of 0.

The Null Space is also called the Kernel.

Note that $\,0\,$ is always in the pre-image. Its output is $\,0\,$.

Consider the Transpose

$$A = \begin{bmatrix} | & | & & | \\ | & | & & | \\ | & a_1 & a_2 & \cdots & a_N \\ | & | & & | \end{bmatrix} \quad A^T = \begin{bmatrix} - & a_1^T & - \\ - & a_2^T & - \\ \vdots & & \vdots \\ - & a_N^T & - \end{bmatrix}$$

The rows of A^T are the columns of A.

Consider any vector in the null space of A^T .

$$A^{T}v = \begin{bmatrix} - & a_{1}^{T} & - \\ - & a_{2}^{T} & - \\ & \vdots & \\ - & a_{N}^{T} & - \end{bmatrix} v = \begin{bmatrix} a_{1}^{T}v \\ a_{2}^{T}v \\ \vdots \\ a_{N}^{T}v \end{bmatrix} = 0$$

 $oldsymbol{v}$ must be perpendicular to the columns of A .

21

So every vector in the null space is perpendicular to every vector in the Image.

$$\mathcal{N}(A^T) \perp \operatorname{Im}(A)$$

Theorem

Any vector in $\ensuremath{\mathbb{R}}^M$ is either in the image of A or the null space of A^T .

23

So every vector in the null space is perpendicular to every vector in the Image.

$$\mathcal{N}(A^T) \perp \operatorname{Im}(A)$$

We could make the same argument in the other direction.

$$\mathcal{N}(A) \perp \operatorname{Im}\left(A^{T}\right)$$

25

Matrix-Matrix Multiplication

$$U \underbrace{\begin{bmatrix} | & | & | \\ v_1 & v_2 & \cdots & v_N \\ | & | & & | \end{bmatrix}}_{V_V} = \begin{bmatrix} | & | & | & | \\ Uv_1 & Uv_2 & \cdots & Uv_N \\ | & | & & | \end{bmatrix}$$

Each column of the output is the result of the matrix U times the corresponding column of the matrix V.

27

Matrix-Matrix Multiplication

$$\begin{bmatrix} - & r_{u,1}^T & - \\ - & r_{u,2}^T & - \\ \vdots & \vdots & \vdots \\ - & r_{u,M}^T & - \end{bmatrix} \begin{bmatrix} | & | & | \\ c_{v,1} & c_{v,2} & \cdots & c_{v,N} \\ | & | & | \end{bmatrix} = \begin{bmatrix} r_{u,1}^T c_{v,1} & r_{u,1}^T c_{v,2} & \cdots & r_{u,1}^T c_{v,N} \\ r_{u,2}^T c_{v,1} & r_{u,2}^T c_{v,2} & \cdots & r_{u,2}^T c_{v,N} \\ \vdots & & \ddots & \vdots \\ r_{u,M}^T c_{v,1} & r_{u,M}^T c_{v,2} & \cdots & r_{u,M}^T c_{v,N} \end{bmatrix}$$

Each element of the output is a dot product of the rows of the first matrix with the columns of the second.

Matrix Inverse

For some matrices, there exists an inverse matrix such that

$$M^{-1}M = I$$

Note: it's a very special thing for a matrix to be invertible.

29

Theorem

Only square matrices can be invertible.

Block Matrix

A matrix where each element is a matrix.

$$\begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1N} \\ A_{21} & A_{22} & & A_{2N} \\ \vdots & & \ddots & \vdots \\ A_{M1} & A_{M2} & & A_{MN} \end{bmatrix}$$

Here, each A_{ij} is a matrix.

31

Block Matrix Multiplication

Block Matrix Multiplication is just like the dot product matrix multiplication.

$$\begin{bmatrix} - & r_{A,1}^T & - \\ - & r_{A,2}^T & - \\ \vdots & \vdots & \vdots & \vdots \\ - & r_{A,M}^T & - \end{bmatrix} \begin{bmatrix} | & | & & | \\ c_{B,1} & c_{B,2} & \cdots & c_{B,N} \\ | & | & & | \end{bmatrix} = \begin{bmatrix} r_{A,1}^T c_{B,1} & r_{A,1}^T c_{B,2} & \cdots & r_{A,1}^T c_{B,N} \\ r_{A,2}^T c_{B,1} & r_{A,2}^T c_{B,2} & \cdots & r_{A,2}^T c_{B,N} \\ \vdots & & \ddots & & \vdots \\ r_{A,M}^T c_{B,1} & r_{A,M}^T c_{B,2} & \cdots & r_{A,M}^T c_{B,N} \end{bmatrix}$$