Optimization

Math Lecture 5

Nicholas Dwork

1

Main Goal

Find x such that $Ax \approx b$.

Three possibilities

There doesn't exist any x that satisfies There exists exactly 1 x that satisfies There exists infinitely many x that satisfies

One Solution

If there exists a solution, then we seek the x that satisfies $A\,x=b$.

3

No Solutions

If there doesn't exist any x such that $A \, x = b$ then we seek the smallest x that minimizes

$$||Ax = b||_2$$

Infinite Solutions

If there exist infinite solutions, then we seek the smallest x that satisfies

$$Ax = b$$

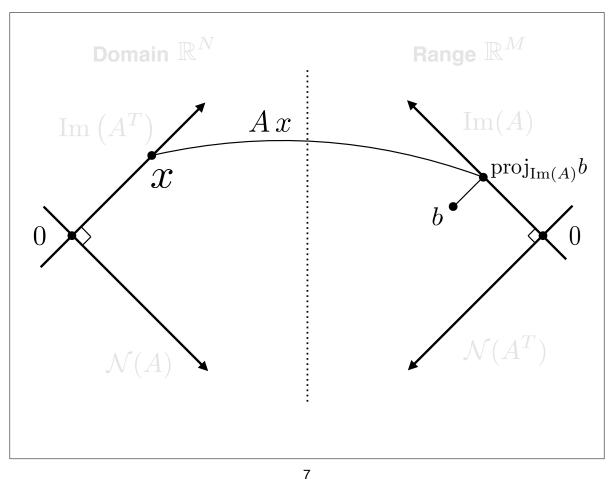
5

Pseudo-Inverse

The Pseudo-Inverse of A is the matrix A^{\dagger} such that A^{\dagger} b is the solution to the following optimization problem (for any b).

minimize
$$||x||_2$$

subject to $Ax = \operatorname{proj}_{\operatorname{Im}(A)} b$



Most common situation is that there are no solutions and A is tall and skinny with linearly independent columns

$$Ax = b$$

Left multiply by A^T

$$A^T A x = A^T b$$

The expression above is called the "Normal Equations"

$$A^T A x = A^T b$$

Since A has linearly independent columns, A^TA is invertible.

$$x = \left(A^T A\right)^{-1} A^T b$$

Now we see how to determine the pseudo-inverse of $\,A\,$ for this situation

$$A^{\dagger} = \left(A^T A\right)^{-1} A^T$$

9

Mathematical computer programs have the pseudo-inverse solution built in.

In python

x = numpy.linalg.solve(A, b)

In Matlab

 $x = A \setminus b;$

Regularization

If there are infinite solutions, we must do more to make the solution unique.

This is accomplished through Regularization

minimize
$$||Ax - b||_2 + \gamma R(x)$$

R is the regularization function.

This is also often done even if there are no solutions to make the problem better behaved.

11

Tikhonov Regularization

minimize
$$||Ax - b||_2 + \gamma ||\Gamma x||_2$$

 Γ is called the Tikhonov matrix

 γ is the regularization parameter. Trades off importance of data matching and regularization

Tikhonov Regularization

minimize
$$||Ax - b||_2 + \gamma ||\Gamma x||_2$$

Example Tikhonov matrices:

D - Dx is a vector of all the horizontal and vertical differences. Used if x is expected to be smooth

/- identity matrix is used when x is expected to be small

13

Tikhonov Regularization

minimize
$$||Ax - b||_2 + \gamma ||\Gamma x||_2$$

Can be combined into a minimization of a single term.

You will do this for homework.