Vectors

Math Lecture 2

Nicholas Dwork

Vectors

A vector is an ordered finite list of numbers together with pointwise addition and scalar multiplication.

Example: $\begin{bmatrix} -1.1 \end{bmatrix}$ (-1.1, 0.0, 3.6, -7.2)

 $\begin{bmatrix}
-1.1 \\
0.0 \\
3.6 \\
-7.2
\end{bmatrix}$ (-1.

Example: 0

All the elements are 0.

The length is understood from context.

Drawing Vectors in 2D

$$a = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$

Vector Addition

Two vectors of the same size can be added together by adding corresponding components.

$$\begin{bmatrix} 0 \\ 7 \\ 3 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 9 \\ 3 \end{bmatrix}$$

Example:
$$\begin{bmatrix} 1 \\ 9 \end{bmatrix} - \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 8 \end{bmatrix}$$

Geometric Interpretation

Vectors add tip-to-tail.

Scalar Multiplication

Every element of the vector is multiplied by the scalar (i.e. number)

Example:

$$(-2)\begin{bmatrix} 1\\9\\-6 \end{bmatrix} = \begin{bmatrix} -2\\-18\\12 \end{bmatrix}$$

Geometric Interpretation

Vector is scaled by scalar multiplication.

Parametric Equation of a Line

Suppose that a is a point on the line and v is a vector parallel to the line. The line can be represented as

$$f(t) = a + t v$$

where t is any real number.

Length of a Vector

The length of a vector $\ \mathit{a}$, denoted by $\| \mathit{a} \|_2$, is

$$||a||_2 = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2}$$

Dot Product

If a and b are vectors then

$$a \cdot b = a^T b = a_1 b_1 + a_2 b_2 + \dots + a_n b_n$$

Cross Product

If a and b are vectors in \mathbb{R}^3

$$a \times b = \begin{bmatrix} a_2b_3 - a_3b_2 \\ -a_1b_3 + b_1a_3 \\ a_1b_2 - b_1a_2 \end{bmatrix}$$

Angle Between Two Vectors

Let $\, heta\,$ denote the angle between vectors $\,a\,$ and $\,b\,$.

$$\theta = \arccos\left(\frac{a^T b}{\|a\|_2 \|b\|_2}\right)$$

Perpendicular Vectors

Two vectors $\,a\,$ and $\,b\,$ are perpendicular if and only if

$$a \cdot b = 0$$

Dot Product Properties

The angle between two vectors a,b is acute if and only if

$$a \cdot b > 0$$

The angle between two vectors a,b is obtuse if and only if

$$a \cdot b < 0$$

Cross Product Properties

Define c to be $c = a \times b$.

Then c is perpendicular to a and c is perpendicular to b

$$c \perp a$$

$$c \perp b$$

Cauchy-Schwarz Inequality

Bounds the magnitude of the inner product between two vectors

$$|a^T b| \le ||a||_2 ||b||_2$$

Linear Combination

Suppose a_1, a_2, \ldots, a_n are vectors of the same size.

A linear combination of these vectors is an expression of the form

$$\beta_1 a_1 + \beta_2 a_2 + \cdots + \beta_n a_n$$

where $\beta_1, \beta_2, \dots, \beta_n$ are numbers.

Linearly Independent

A set of vectors a_1, a_2, \ldots, a_n is Linearly Independent means the only solution to

$$c_1 a_1 + c_2 a_2 + \dots + c_n a_n = 0$$

is
$$c_1 = c_2 = \cdots = c_n = 0$$

Span

Suppose a_1, a_2, \ldots, a_n are vectors of the same size.

The span of $\{a_1, a_2, \dots, a_n\}$ is the set of *all* linear combinations of the vectors in the set.

L2 Norm

The L2 norm of a vector $\, \it \Omega \,$, denoted by $\| \it a \|_2 \,$, is

$$||a||_2 = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2}$$

Metric of Similarity - L2 Norm

If the L2 norm = 0, the vectors are identical

$$||a - b||_2$$

Metric of Similarity - Pearson Correlation Coefficient

$$\rho = \frac{a^T b}{\|a\|_2 \|b\|_2}$$

Vectors are considered identical

Vector Projection

u is called the projection of vector $\,a\,$ onto $\,b\,$.

$$\nu = \operatorname{proj}_b a = \frac{a^T b}{\|b\|_2^2} b$$